Searching...
Please wait while we search the database
| CVE ID | Severity | Description | Published | Actions |
|---|---|---|---|---|
|
CVE-2023-54281
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: release path before inode lookup during the ino lookup ioctl
During the ino lookup ioctl we can end up calling btrfs_iget() to get an
inode reference while we are holding on a root's btree. If btrfs_iget()
needs to lookup the inode from the root's btree, because it's not
currently loaded in memory, then it will need to lock another or the
same path in the same root btree. This may result in a deadlock and
trigger the following lockdep splat:
WARNING: possible circular locking dependency detected
6.5.0-rc7-syzkaller-00004-gf7757129e3de #0 Not tainted
------------------------------------------------------
syz-executor277/5012 is trying to acquire lock:
ffff88802df41710 (btrfs-tree-01){++++}-{3:3}, at: __btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136
but task is already holding lock:
ffff88802df418e8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (btrfs-tree-00){++++}-{3:3}:
down_read_nested+0x49/0x2f0 kernel/locking/rwsem.c:1645
__btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136
btrfs_search_slot+0x13a4/0x2f80 fs/btrfs/ctree.c:2302
btrfs_init_root_free_objectid+0x148/0x320 fs/btrfs/disk-io.c:4955
btrfs_init_fs_root fs/btrfs/disk-io.c:1128 [inline]
btrfs_get_root_ref+0x5ae/0xae0 fs/btrfs/disk-io.c:1338
btrfs_get_fs_root fs/btrfs/disk-io.c:1390 [inline]
open_ctree+0x29c8/0x3030 fs/btrfs/disk-io.c:3494
btrfs_fill_super+0x1c7/0x2f0 fs/btrfs/super.c:1154
btrfs_mount_root+0x7e0/0x910 fs/btrfs/super.c:1519
legacy_get_tree+0xef/0x190 fs/fs_context.c:611
vfs_get_tree+0x8c/0x270 fs/super.c:1519
fc_mount fs/namespace.c:1112 [inline]
vfs_kern_mount+0xbc/0x150 fs/namespace.c:1142
btrfs_mount+0x39f/0xb50 fs/btrfs/super.c:1579
legacy_get_tree+0xef/0x190 fs/fs_context.c:611
vfs_get_tree+0x8c/0x270 fs/super.c:1519
do_new_mount+0x28f/0xae0 fs/namespace.c:3335
do_mount fs/namespace.c:3675 [inline]
__do_sys_mount fs/namespace.c:3884 [inline]
__se_sys_mount+0x2d9/0x3c0 fs/namespace.c:3861
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
-> #0 (btrfs-tree-01){++++}-{3:3}:
check_prev_add kernel/locking/lockdep.c:3142 [inline]
check_prevs_add kernel/locking/lockdep.c:3261 [inline]
validate_chain kernel/locking/lockdep.c:3876 [inline]
__lock_acquire+0x39ff/0x7f70 kernel/locking/lockdep.c:5144
lock_acquire+0x1e3/0x520 kernel/locking/lockdep.c:5761
down_read_nested+0x49/0x2f0 kernel/locking/rwsem.c:1645
__btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136
btrfs_tree_read_lock fs/btrfs/locking.c:142 [inline]
btrfs_read_lock_root_node+0x292/0x3c0 fs/btrfs/locking.c:281
btrfs_search_slot_get_root fs/btrfs/ctree.c:1832 [inline]
btrfs_search_slot+0x4ff/0x2f80 fs/btrfs/ctree.c:2154
btrfs_lookup_inode+0xdc/0x480 fs/btrfs/inode-item.c:412
btrfs_read_locked_inode fs/btrfs/inode.c:3892 [inline]
btrfs_iget_path+0x2d9/0x1520 fs/btrfs/inode.c:5716
btrfs_search_path_in_tree_user fs/btrfs/ioctl.c:1961 [inline]
btrfs_ioctl_ino_lookup_user+0x77a/0xf50 fs/btrfs/ioctl.c:2105
btrfs_ioctl+0xb0b/0xd40 fs/btrfs/ioctl.c:4683
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl+0xf8/0x170 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
other info
---truncated---
|
30 Dec 2025
|
|
|
CVE-2023-54280
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
cifs: fix potential race when tree connecting ipc
Protect access of TCP_Server_Info::hostname when building the ipc tree
name as it might get freed in cifsd thread and thus causing an
use-after-free bug in __tree_connect_dfs_target(). Also, while at it,
update status of IPC tcon on success and then avoid any extra tree
connects.
|
30 Dec 2025
|
|
|
CVE-2022-50883
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Prevent decl_tag from being referenced in func_proto arg
Syzkaller managed to hit another decl_tag issue:
btf_func_proto_check kernel/bpf/btf.c:4506 [inline]
btf_check_all_types kernel/bpf/btf.c:4734 [inline]
btf_parse_type_sec+0x1175/0x1980 kernel/bpf/btf.c:4763
btf_parse kernel/bpf/btf.c:5042 [inline]
btf_new_fd+0x65a/0xb00 kernel/bpf/btf.c:6709
bpf_btf_load+0x6f/0x90 kernel/bpf/syscall.c:4342
__sys_bpf+0x50a/0x6c0 kernel/bpf/syscall.c:5034
__do_sys_bpf kernel/bpf/syscall.c:5093 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5091 [inline]
__x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5091
do_syscall_64+0x54/0x70 arch/x86/entry/common.c:48
This seems similar to commit ea68376c8bed ("bpf: prevent decl_tag from being
referenced in func_proto") but for the argument.
|
30 Dec 2025
|
|
|
CVE-2022-50882
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
media: uvcvideo: Fix memory leak in uvc_gpio_parse
Previously the unit buffer was allocated before checking the IRQ for
privacy GPIO. In case of error, the unit buffer was leaked.
Allocate the unit buffer after the IRQ to avoid it.
Addresses-Coverity-ID: 1474639 ("Resource leak")
|
30 Dec 2025
|
|
|
CVE-2022-50881
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: Fix use-after-free in ath9k_hif_usb_disconnect()
This patch fixes a use-after-free in ath9k that occurs in
ath9k_hif_usb_disconnect() when ath9k_destroy_wmi() is trying to access
'drv_priv' that has already been freed by ieee80211_free_hw(), called by
ath9k_htc_hw_deinit(). The patch moves ath9k_destroy_wmi() before
ieee80211_free_hw(). Note that urbs from the driver should be killed
before freeing 'wmi' with ath9k_destroy_wmi() as their callbacks will
access 'wmi'.
Found by a modified version of syzkaller.
==================================================================
BUG: KASAN: use-after-free in ath9k_destroy_wmi+0x38/0x40
Read of size 8 at addr ffff8881069132a0 by task kworker/0:1/7
CPU: 0 PID: 7 Comm: kworker/0:1 Tainted: G O 5.14.0+ #131
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
Workqueue: usb_hub_wq hub_event
Call Trace:
dump_stack_lvl+0x8e/0xd1
print_address_description.constprop.0.cold+0x93/0x334
? ath9k_destroy_wmi+0x38/0x40
? ath9k_destroy_wmi+0x38/0x40
kasan_report.cold+0x83/0xdf
? ath9k_destroy_wmi+0x38/0x40
ath9k_destroy_wmi+0x38/0x40
ath9k_hif_usb_disconnect+0x329/0x3f0
? ath9k_hif_usb_suspend+0x120/0x120
? usb_disable_interface+0xfc/0x180
usb_unbind_interface+0x19b/0x7e0
? usb_autoresume_device+0x50/0x50
device_release_driver_internal+0x44d/0x520
bus_remove_device+0x2e5/0x5a0
device_del+0x5b2/0xe30
? __device_link_del+0x370/0x370
? usb_remove_ep_devs+0x43/0x80
? remove_intf_ep_devs+0x112/0x1a0
usb_disable_device+0x1e3/0x5a0
usb_disconnect+0x267/0x870
hub_event+0x168d/0x3950
? rcu_read_lock_sched_held+0xa1/0xd0
? hub_port_debounce+0x2e0/0x2e0
? check_irq_usage+0x860/0xf20
? drain_workqueue+0x281/0x360
? lock_release+0x640/0x640
? rcu_read_lock_sched_held+0xa1/0xd0
? rcu_read_lock_bh_held+0xb0/0xb0
? lockdep_hardirqs_on_prepare+0x273/0x3e0
process_one_work+0x92b/0x1460
? pwq_dec_nr_in_flight+0x330/0x330
? rwlock_bug.part.0+0x90/0x90
worker_thread+0x95/0xe00
? __kthread_parkme+0x115/0x1e0
? process_one_work+0x1460/0x1460
kthread+0x3a1/0x480
? set_kthread_struct+0x120/0x120
ret_from_fork+0x1f/0x30
The buggy address belongs to the page:
page:ffffea00041a44c0 refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x106913
flags: 0x200000000000000(node=0|zone=2)
raw: 0200000000000000 0000000000000000 dead000000000122 0000000000000000
raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: kasan: bad access detected
page_owner tracks the page as freed
page last allocated via order 3, migratetype Unmovable, gfp_mask 0x40dc0(GFP_KERNEL|__GFP_COMP|__GFP_ZERO), pid 7, ts 38347963444, free_ts 41399957635
prep_new_page+0x1aa/0x240
get_page_from_freelist+0x159a/0x27c0
__alloc_pages+0x2da/0x6a0
alloc_pages+0xec/0x1e0
kmalloc_order+0x39/0xf0
kmalloc_order_trace+0x19/0x120
__kmalloc+0x308/0x390
wiphy_new_nm+0x6f5/0x1dd0
ieee80211_alloc_hw_nm+0x36d/0x2230
ath9k_htc_probe_device+0x9d/0x1e10
ath9k_htc_hw_init+0x34/0x50
ath9k_hif_usb_firmware_cb+0x25f/0x4e0
request_firmware_work_func+0x131/0x240
process_one_work+0x92b/0x1460
worker_thread+0x95/0xe00
kthread+0x3a1/0x480
page last free stack trace:
free_pcp_prepare+0x3d3/0x7f0
free_unref_page+0x1e/0x3d0
device_release+0xa4/0x240
kobject_put+0x186/0x4c0
put_device+0x20/0x30
ath9k_htc_disconnect_device+0x1cf/0x2c0
ath9k_htc_hw_deinit+0x26/0x30
ath9k_hif_usb_disconnect+0x2d9/0x3f0
usb_unbind_interface+0x19b/0x7e0
device_release_driver_internal+0x44d/0x520
bus_remove_device+0x2e5/0x5a0
device_del+0x5b2/0xe30
usb_disable_device+0x1e3/0x5a0
usb_disconnect+0x267/0x870
hub_event+0x168d/0x3950
process_one_work+0x92b/0x1460
Memory state around the buggy address:
ffff888106913180: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ffff888106913200: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
>ffff888
---truncated---
|
30 Dec 2025
|
|
|
CVE-2022-50880
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath10k: add peer map clean up for peer delete in ath10k_sta_state()
When peer delete failed in a disconnect operation, use-after-free
detected by KFENCE in below log. It is because for each vdev_id and
address, it has only one struct ath10k_peer, it is allocated in
ath10k_peer_map_event(). When connected to an AP, it has more than
one HTT_T2H_MSG_TYPE_PEER_MAP reported from firmware, then the
array peer_map of struct ath10k will be set muti-elements to the
same ath10k_peer in ath10k_peer_map_event(). When peer delete failed
in ath10k_sta_state(), the ath10k_peer will be free for the 1st peer
id in array peer_map of struct ath10k, and then use-after-free happened
for the 2nd peer id because they map to the same ath10k_peer.
And clean up all peers in array peer_map for the ath10k_peer, then
user-after-free disappeared
peer map event log:
[ 306.911021] wlan0: authenticate with b0:2a:43:e6:75:0e
[ 306.957187] ath10k_pci 0000:01:00.0: mac vdev 0 peer create b0:2a:43:e6:75:0e (new sta) sta 1 / 32 peer 1 / 33
[ 306.957395] ath10k_pci 0000:01:00.0: htt peer map vdev 0 peer b0:2a:43:e6:75:0e id 246
[ 306.957404] ath10k_pci 0000:01:00.0: htt peer map vdev 0 peer b0:2a:43:e6:75:0e id 198
[ 306.986924] ath10k_pci 0000:01:00.0: htt peer map vdev 0 peer b0:2a:43:e6:75:0e id 166
peer unmap event log:
[ 435.715691] wlan0: deauthenticating from b0:2a:43:e6:75:0e by local choice (Reason: 3=DEAUTH_LEAVING)
[ 435.716802] ath10k_pci 0000:01:00.0: mac vdev 0 peer delete b0:2a:43:e6:75:0e sta ffff990e0e9c2b50 (sta gone)
[ 435.717177] ath10k_pci 0000:01:00.0: htt peer unmap vdev 0 peer b0:2a:43:e6:75:0e id 246
[ 435.717186] ath10k_pci 0000:01:00.0: htt peer unmap vdev 0 peer b0:2a:43:e6:75:0e id 198
[ 435.717193] ath10k_pci 0000:01:00.0: htt peer unmap vdev 0 peer b0:2a:43:e6:75:0e id 166
use-after-free log:
[21705.888627] wlan0: deauthenticating from d0:76:8f:82:be:75 by local choice (Reason: 3=DEAUTH_LEAVING)
[21713.799910] ath10k_pci 0000:01:00.0: failed to delete peer d0:76:8f:82:be:75 for vdev 0: -110
[21713.799925] ath10k_pci 0000:01:00.0: found sta peer d0:76:8f:82:be:75 (ptr 0000000000000000 id 102) entry on vdev 0 after it was supposedly removed
[21713.799968] ==================================================================
[21713.799991] BUG: KFENCE: use-after-free read in ath10k_sta_state+0x265/0xb8a [ath10k_core]
[21713.799991]
[21713.799997] Use-after-free read at 0x00000000abe1c75e (in kfence-#69):
[21713.800010] ath10k_sta_state+0x265/0xb8a [ath10k_core]
[21713.800041] drv_sta_state+0x115/0x677 [mac80211]
[21713.800059] __sta_info_destroy_part2+0xb1/0x133 [mac80211]
[21713.800076] __sta_info_flush+0x11d/0x162 [mac80211]
[21713.800093] ieee80211_set_disassoc+0x12d/0x2f4 [mac80211]
[21713.800110] ieee80211_mgd_deauth+0x26c/0x29b [mac80211]
[21713.800137] cfg80211_mlme_deauth+0x13f/0x1bb [cfg80211]
[21713.800153] nl80211_deauthenticate+0xf8/0x121 [cfg80211]
[21713.800161] genl_rcv_msg+0x38e/0x3be
[21713.800166] netlink_rcv_skb+0x89/0xf7
[21713.800171] genl_rcv+0x28/0x36
[21713.800176] netlink_unicast+0x179/0x24b
[21713.800181] netlink_sendmsg+0x3a0/0x40e
[21713.800187] sock_sendmsg+0x72/0x76
[21713.800192] ____sys_sendmsg+0x16d/0x1e3
[21713.800196] ___sys_sendmsg+0x95/0xd1
[21713.800200] __sys_sendmsg+0x85/0xbf
[21713.800205] do_syscall_64+0x43/0x55
[21713.800210] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[21713.800213]
[21713.800219] kfence-#69: 0x000000009149b0d5-0x000000004c0697fb, size=1064, cache=kmalloc-2k
[21713.800219]
[21713.800224] allocated by task 13 on cpu 0 at 21705.501373s:
[21713.800241] ath10k_peer_map_event+0x7e/0x154 [ath10k_core]
[21713.800254] ath10k_htt_t2h_msg_handler+0x586/0x1039 [ath10k_core]
[21713.800265] ath10k_htt_htc_t2h_msg_handler+0x12/0x28 [ath10k_core]
[21713.800277] ath10k_htc_rx_completion_handler+0x14c/0x1b5 [ath10k_core]
[21713.800283] ath10k_pci_process_rx_cb+0x195/0x1d
---truncated---
|
30 Dec 2025
|
|
|
CVE-2022-50879
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
objtool: Fix SEGFAULT
find_insn() will return NULL in case of failure. Check insn in order
to avoid a kernel Oops for NULL pointer dereference.
|
30 Dec 2025
|
|
|
CVE-2022-50878
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
gpu: lontium-lt9611: Fix NULL pointer dereference in lt9611_connector_init()
A NULL check for bridge->encoder shows that it may be NULL, but it
already been dereferenced on all paths leading to the check.
812 if (!bridge->encoder) {
Dereference the pointer bridge->encoder.
810 drm_connector_attach_encoder(<9611->connector, bridge->encoder);
|
30 Dec 2025
|
|
|
CVE-2022-50877
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
net: broadcom: bcm4908_enet: update TX stats after actual transmission
Queueing packets doesn't guarantee their transmission. Update TX stats
after hardware confirms consuming submitted data.
This also fixes a possible race and NULL dereference.
bcm4908_enet_start_xmit() could try to access skb after freeing it in
the bcm4908_enet_poll_tx().
|
30 Dec 2025
|
|
|
CVE-2022-50876
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
usb: musb: Fix musb_gadget.c rxstate overflow bug
The usb function device call musb_gadget_queue() adds the passed
request to musb_ep::req_list,If the (request->length > musb_ep->packet_sz)
and (is_buffer_mapped(req) return false),the rxstate() will copy all data
in fifo to request->buf which may cause request->buf out of bounds.
Fix it by add the length check :
fifocnt = min_t(unsigned, request->length - request->actual, fifocnt);
|
30 Dec 2025
|
|
|
CVE-2022-50875
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
of: overlay: fix null pointer dereferencing in find_dup_cset_node_entry() and find_dup_cset_prop()
When kmalloc() fail to allocate memory in kasprintf(), fn_1 or fn_2 will
be NULL, and strcmp() will cause null pointer dereference.
|
30 Dec 2025
|
|
|
CVE-2022-50874
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/erdma: Fix refcount leak in erdma_mmap
rdma_user_mmap_entry_get() take reference, we should release it when not
need anymore, add the missing rdma_user_mmap_entry_put() in the error
path to fix it.
|
30 Dec 2025
|
|
|
CVE-2025-14426
|
MEDIUM |
The Strong Testimonials plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check in the 'edit_rating' function in all versions up to, and including, 3.2.18. This makes it possible for authenticated attackers with Contributor-level access and above to modify or delete the rating meta on any testimonial post, including those created by other users, by reusing a valid nonce obtained from their own testimonial edit screen.
|
30 Dec 2025
|
|
|
CVE-2023-54279
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
MIPS: fw: Allow firmware to pass a empty env
fw_getenv will use env entry to determine style of env,
however it is legal for firmware to just pass a empty list.
Check if first entry exist before running strchr to avoid
null pointer dereference.
|
30 Dec 2025
|
|
|
CVE-2023-54278
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
s390/vmem: split pages when debug pagealloc is enabled
Since commit bb1520d581a3 ("s390/mm: start kernel with DAT enabled")
the kernel crashes early during boot when debug pagealloc is enabled:
mem auto-init: stack:off, heap alloc:off, heap free:off
addressing exception: 0005 ilc:2 [#1] SMP DEBUG_PAGEALLOC
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Not tainted 6.5.0-rc3-09759-gc5666c912155 #630
[..]
Krnl Code: 00000000001325f6: ec5600248064 cgrj %r5,%r6,8,000000000013263e
00000000001325fc: eb880002000c srlg %r8,%r8,2
#0000000000132602: b2210051 ipte %r5,%r1,%r0,0
>0000000000132606: b90400d1 lgr %r13,%r1
000000000013260a: 41605008 la %r6,8(%r5)
000000000013260e: a7db1000 aghi %r13,4096
0000000000132612: b221006d ipte %r6,%r13,%r0,0
0000000000132616: e3d0d0000171 lay %r13,4096(%r13)
Call Trace:
__kernel_map_pages+0x14e/0x320
__free_pages_ok+0x23a/0x5a8)
free_low_memory_core_early+0x214/0x2c8
memblock_free_all+0x28/0x58
mem_init+0xb6/0x228
mm_core_init+0xb6/0x3b0
start_kernel+0x1d2/0x5a8
startup_continue+0x36/0x40
Kernel panic - not syncing: Fatal exception: panic_on_oops
This is caused by using large mappings on machines with EDAT1/EDAT2. Add
the code to split the mappings into 4k pages if debug pagealloc is enabled
by CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT or the debug_pagealloc kernel
command line option.
|
30 Dec 2025
|
|
|
CVE-2023-54277
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
fbdev: udlfb: Fix endpoint check
The syzbot fuzzer detected a problem in the udlfb driver, caused by an
endpoint not having the expected type:
usb 1-1: Read EDID byte 0 failed: -71
usb 1-1: Unable to get valid EDID from device/display
------------[ cut here ]------------
usb 1-1: BOGUS urb xfer, pipe 3 != type 1
WARNING: CPU: 0 PID: 9 at drivers/usb/core/urb.c:504 usb_submit_urb+0xed6/0x1880
drivers/usb/core/urb.c:504
Modules linked in:
CPU: 0 PID: 9 Comm: kworker/0:1 Not tainted
6.4.0-rc1-syzkaller-00016-ga4422ff22142 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google
04/28/2023
Workqueue: usb_hub_wq hub_event
RIP: 0010:usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504
...
Call Trace:
<TASK>
dlfb_submit_urb+0x92/0x180 drivers/video/fbdev/udlfb.c:1980
dlfb_set_video_mode+0x21f0/0x2950 drivers/video/fbdev/udlfb.c:315
dlfb_ops_set_par+0x2a7/0x8d0 drivers/video/fbdev/udlfb.c:1111
dlfb_usb_probe+0x149a/0x2710 drivers/video/fbdev/udlfb.c:1743
The current approach for this issue failed to catch the problem
because it only checks for the existence of a bulk-OUT endpoint; it
doesn't check whether this endpoint is the one that the driver will
actually use.
We can fix the problem by instead checking that the endpoint used by
the driver does exist and is bulk-OUT.
|
30 Dec 2025
|
|
|
CVE-2023-54276
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
nfsd: move init of percpu reply_cache_stats counters back to nfsd_init_net
Commit f5f9d4a314da ("nfsd: move reply cache initialization into nfsd
startup") moved the initialization of the reply cache into nfsd startup,
but didn't account for the stats counters, which can be accessed before
nfsd is ever started. The result can be a NULL pointer dereference when
someone accesses /proc/fs/nfsd/reply_cache_stats while nfsd is still
shut down.
This is a regression and a user-triggerable oops in the right situation:
- non-x86_64 arch
- /proc/fs/nfsd is mounted in the namespace
- nfsd is not started in the namespace
- unprivileged user calls "cat /proc/fs/nfsd/reply_cache_stats"
Although this is easy to trigger on some arches (like aarch64), on
x86_64, calling this_cpu_ptr(NULL) evidently returns a pointer to the
fixed_percpu_data. That struct looks just enough like a newly
initialized percpu var to allow nfsd_reply_cache_stats_show to access
it without Oopsing.
Move the initialization of the per-net+per-cpu reply-cache counters
back into nfsd_init_net, while leaving the rest of the reply cache
allocations to be done at nfsd startup time.
Kudos to Eirik who did most of the legwork to track this down.
|
30 Dec 2025
|
|
|
CVE-2023-54275
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: Fix memory leak in ath11k_peer_rx_frag_setup
crypto_alloc_shash() allocates resources, which should be released by
crypto_free_shash(). When ath11k_peer_find() fails, there has memory
leak. Add missing crypto_free_shash() to fix this.
|
30 Dec 2025
|
|
|
CVE-2023-54274
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/srpt: Add a check for valid 'mad_agent' pointer
When unregistering MAD agent, srpt module has a non-null check
for 'mad_agent' pointer before invoking ib_unregister_mad_agent().
This check can pass if 'mad_agent' variable holds an error value.
The 'mad_agent' can have an error value for a short window when
srpt_add_one() and srpt_remove_one() is executed simultaneously.
In srpt module, added a valid pointer check for 'sport->mad_agent'
before unregistering MAD agent.
This issue can hit when RoCE driver unregisters ib_device
Stack Trace:
------------
BUG: kernel NULL pointer dereference, address: 000000000000004d
PGD 145003067 P4D 145003067 PUD 2324fe067 PMD 0
Oops: 0002 [#1] PREEMPT SMP NOPTI
CPU: 10 PID: 4459 Comm: kworker/u80:0 Kdump: loaded Tainted: P
Hardware name: Dell Inc. PowerEdge R640/06NR82, BIOS 2.5.4 01/13/2020
Workqueue: bnxt_re bnxt_re_task [bnxt_re]
RIP: 0010:_raw_spin_lock_irqsave+0x19/0x40
Call Trace:
ib_unregister_mad_agent+0x46/0x2f0 [ib_core]
IPv6: ADDRCONF(NETDEV_CHANGE): bond0: link becomes ready
? __schedule+0x20b/0x560
srpt_unregister_mad_agent+0x93/0xd0 [ib_srpt]
srpt_remove_one+0x20/0x150 [ib_srpt]
remove_client_context+0x88/0xd0 [ib_core]
bond0: (slave p2p1): link status definitely up, 100000 Mbps full duplex
disable_device+0x8a/0x160 [ib_core]
bond0: active interface up!
? kernfs_name_hash+0x12/0x80
(NULL device *): Bonding Info Received: rdev: 000000006c0b8247
__ib_unregister_device+0x42/0xb0 [ib_core]
(NULL device *): Master: mode: 4 num_slaves:2
ib_unregister_device+0x22/0x30 [ib_core]
(NULL device *): Slave: id: 105069936 name:p2p1 link:0 state:0
bnxt_re_stopqps_and_ib_uninit+0x83/0x90 [bnxt_re]
bnxt_re_alloc_lag+0x12e/0x4e0 [bnxt_re]
|
30 Dec 2025
|
|
|
CVE-2023-54273
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
xfrm: Fix leak of dev tracker
At the stage of direction checks, the netdev reference tracker is
already initialized, but released with wrong *_put() call.
|
30 Dec 2025
|
|
|
CVE-2023-54272
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix a possible null-pointer dereference in ni_clear()
In a previous commit c1006bd13146, ni->mi.mrec in ni_write_inode()
could be NULL, and thus a NULL check is added for this variable.
However, in the same call stack, ni->mi.mrec can be also dereferenced
in ni_clear():
ntfs_evict_inode(inode)
ni_write_inode(inode, ...)
ni = ntfs_i(inode);
is_rec_inuse(ni->mi.mrec) -> Add a NULL check by previous commit
ni_clear(ntfs_i(inode))
is_rec_inuse(ni->mi.mrec) -> No check
Thus, a possible null-pointer dereference may exist in ni_clear().
To fix it, a NULL check is added in this function.
|
30 Dec 2025
|
|
|
CVE-2023-54271
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
blk-cgroup: Fix NULL deref caused by blkg_policy_data being installed before init
blk-iocost sometimes causes the following crash:
BUG: kernel NULL pointer dereference, address: 00000000000000e0
...
RIP: 0010:_raw_spin_lock+0x17/0x30
Code: be 01 02 00 00 e8 79 38 39 ff 31 d2 89 d0 5d c3 0f 1f 00 0f 1f 44 00 00 55 48 89 e5 65 ff 05 48 d0 34 7e b9 01 00 00 00 31 c0 <f0> 0f b1 0f 75 02 5d c3 89 c6 e8 ea 04 00 00 5d c3 0f 1f 84 00 00
RSP: 0018:ffffc900023b3d40 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 00000000000000e0 RCX: 0000000000000001
RDX: ffffc900023b3d20 RSI: ffffc900023b3cf0 RDI: 00000000000000e0
RBP: ffffc900023b3d40 R08: ffffc900023b3c10 R09: 0000000000000003
R10: 0000000000000064 R11: 000000000000000a R12: ffff888102337000
R13: fffffffffffffff2 R14: ffff88810af408c8 R15: ffff8881070c3600
FS: 00007faaaf364fc0(0000) GS:ffff88842fdc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000000000e0 CR3: 00000001097b1000 CR4: 0000000000350ea0
Call Trace:
<TASK>
ioc_weight_write+0x13d/0x410
cgroup_file_write+0x7a/0x130
kernfs_fop_write_iter+0xf5/0x170
vfs_write+0x298/0x370
ksys_write+0x5f/0xb0
__x64_sys_write+0x1b/0x20
do_syscall_64+0x3d/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
This happens because iocg->ioc is NULL. The field is initialized by
ioc_pd_init() and never cleared. The NULL deref is caused by
blkcg_activate_policy() installing blkg_policy_data before initializing it.
blkcg_activate_policy() was doing the following:
1. Allocate pd's for all existing blkg's and install them in blkg->pd[].
2. Initialize all pd's.
3. Online all pd's.
blkcg_activate_policy() only grabs the queue_lock and may release and
re-acquire the lock as allocation may need to sleep. ioc_weight_write()
grabs blkcg->lock and iterates all its blkg's. The two can race and if
ioc_weight_write() runs during #1 or between #1 and #2, it can encounter a
pd which is not initialized yet, leading to crash.
The crash can be reproduced with the following script:
#!/bin/bash
echo +io > /sys/fs/cgroup/cgroup.subtree_control
systemd-run --unit touch-sda --scope dd if=/dev/sda of=/dev/null bs=1M count=1 iflag=direct
echo 100 > /sys/fs/cgroup/system.slice/io.weight
bash -c "echo '8:0 enable=1' > /sys/fs/cgroup/io.cost.qos" &
sleep .2
echo 100 > /sys/fs/cgroup/system.slice/io.weight
with the following patch applied:
> diff --git a/block/blk-cgroup.c b/block/blk-cgroup.c
> index fc49be622e05..38d671d5e10c 100644
> --- a/block/blk-cgroup.c
> +++ b/block/blk-cgroup.c
> @@ -1553,6 +1553,12 @@ int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
> pd->online = false;
> }
>
> + if (system_state == SYSTEM_RUNNING) {
> + spin_unlock_irq(&q->queue_lock);
> + ssleep(1);
> + spin_lock_irq(&q->queue_lock);
> + }
> +
> /* all allocated, init in the same order */
> if (pol->pd_init_fn)
> list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
I don't see a reason why all pd's should be allocated, initialized and
onlined together. The only ordering requirement is that parent blkgs to be
initialized and onlined before children, which is guaranteed from the
walking order. Let's fix the bug by allocating, initializing and onlining pd
for each blkg and holding blkcg->lock over initialization and onlining. This
ensures that an installed blkg is always fully initialized and onlined
removing the the race window.
|
30 Dec 2025
|
|
|
CVE-2023-54270
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
media: usb: siano: Fix use after free bugs caused by do_submit_urb
There are UAF bugs caused by do_submit_urb(). One of the KASan reports
is shown below:
[ 36.403605] BUG: KASAN: use-after-free in worker_thread+0x4a2/0x890
[ 36.406105] Read of size 8 at addr ffff8880059600e8 by task kworker/0:2/49
[ 36.408316]
[ 36.408867] CPU: 0 PID: 49 Comm: kworker/0:2 Not tainted 6.2.0-rc3-15798-g5a41237ad1d4-dir8
[ 36.411696] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g15584
[ 36.416157] Workqueue: 0x0 (events)
[ 36.417654] Call Trace:
[ 36.418546] <TASK>
[ 36.419320] dump_stack_lvl+0x96/0xd0
[ 36.420522] print_address_description+0x75/0x350
[ 36.421992] print_report+0x11b/0x250
[ 36.423174] ? _raw_spin_lock_irqsave+0x87/0xd0
[ 36.424806] ? __virt_addr_valid+0xcf/0x170
[ 36.426069] ? worker_thread+0x4a2/0x890
[ 36.427355] kasan_report+0x131/0x160
[ 36.428556] ? worker_thread+0x4a2/0x890
[ 36.430053] worker_thread+0x4a2/0x890
[ 36.431297] ? worker_clr_flags+0x90/0x90
[ 36.432479] kthread+0x166/0x190
[ 36.433493] ? kthread_blkcg+0x50/0x50
[ 36.434669] ret_from_fork+0x22/0x30
[ 36.435923] </TASK>
[ 36.436684]
[ 36.437215] Allocated by task 24:
[ 36.438289] kasan_set_track+0x50/0x80
[ 36.439436] __kasan_kmalloc+0x89/0xa0
[ 36.440566] smsusb_probe+0x374/0xc90
[ 36.441920] usb_probe_interface+0x2d1/0x4c0
[ 36.443253] really_probe+0x1d5/0x580
[ 36.444539] __driver_probe_device+0xe3/0x130
[ 36.446085] driver_probe_device+0x49/0x220
[ 36.447423] __device_attach_driver+0x19e/0x1b0
[ 36.448931] bus_for_each_drv+0xcb/0x110
[ 36.450217] __device_attach+0x132/0x1f0
[ 36.451470] bus_probe_device+0x59/0xf0
[ 36.452563] device_add+0x4ec/0x7b0
[ 36.453830] usb_set_configuration+0xc63/0xe10
[ 36.455230] usb_generic_driver_probe+0x3b/0x80
[ 36.456166] printk: console [ttyGS0] disabled
[ 36.456569] usb_probe_device+0x90/0x110
[ 36.459523] really_probe+0x1d5/0x580
[ 36.461027] __driver_probe_device+0xe3/0x130
[ 36.462465] driver_probe_device+0x49/0x220
[ 36.463847] __device_attach_driver+0x19e/0x1b0
[ 36.465229] bus_for_each_drv+0xcb/0x110
[ 36.466466] __device_attach+0x132/0x1f0
[ 36.467799] bus_probe_device+0x59/0xf0
[ 36.469010] device_add+0x4ec/0x7b0
[ 36.470125] usb_new_device+0x863/0xa00
[ 36.471374] hub_event+0x18c7/0x2220
[ 36.472746] process_one_work+0x34c/0x5b0
[ 36.474041] worker_thread+0x4b7/0x890
[ 36.475216] kthread+0x166/0x190
[ 36.476267] ret_from_fork+0x22/0x30
[ 36.477447]
[ 36.478160] Freed by task 24:
[ 36.479239] kasan_set_track+0x50/0x80
[ 36.480512] kasan_save_free_info+0x2b/0x40
[ 36.481808] ____kasan_slab_free+0x122/0x1a0
[ 36.483173] __kmem_cache_free+0xc4/0x200
[ 36.484563] smsusb_term_device+0xcd/0xf0
[ 36.485896] smsusb_probe+0xc85/0xc90
[ 36.486976] usb_probe_interface+0x2d1/0x4c0
[ 36.488303] really_probe+0x1d5/0x580
[ 36.489498] __driver_probe_device+0xe3/0x130
[ 36.491140] driver_probe_device+0x49/0x220
[ 36.492475] __device_attach_driver+0x19e/0x1b0
[ 36.493988] bus_for_each_drv+0xcb/0x110
[ 36.495171] __device_attach+0x132/0x1f0
[ 36.496617] bus_probe_device+0x59/0xf0
[ 36.497875] device_add+0x4ec/0x7b0
[ 36.498972] usb_set_configuration+0xc63/0xe10
[ 36.500264] usb_generic_driver_probe+0x3b/0x80
[ 36.501740] usb_probe_device+0x90/0x110
[ 36.503084] really_probe+0x1d5/0x580
[ 36.504241] __driver_probe_device+0xe3/0x130
[ 36.505548] driver_probe_device+0x49/0x220
[ 36.506766] __device_attach_driver+0x19e/0x1b0
[ 36.508368] bus_for_each_drv+0xcb/0x110
[ 36.509646] __device_attach+0x132/0x1f0
[ 36.510911] bus_probe_device+0x59/0xf0
[ 36.512103] device_add+0x4ec/0x7b0
[ 36.513215] usb_new_device+0x863/0xa00
[ 36.514736] hub_event+0x18c7/0x2220
[ 36.516130] process_one_work+
---truncated---
|
30 Dec 2025
|
|
|
CVE-2023-54269
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: double free xprt_ctxt while still in use
When an RPC request is deferred, the rq_xprt_ctxt pointer is moved out
of the svc_rqst into the svc_deferred_req.
When the deferred request is revisited, the pointer is copied into
the new svc_rqst - and also remains in the svc_deferred_req.
In the (rare?) case that the request is deferred a second time, the old
svc_deferred_req is reused - it still has all the correct content.
However in that case the rq_xprt_ctxt pointer is NOT cleared so that
when xpo_release_xprt is called, the ctxt is freed (UDP) or possible
added to a free list (RDMA).
When the deferred request is revisited for a second time, it will
reference this ctxt which may be invalid, and the free the object a
second time which is likely to oops.
So change svc_defer() to *always* clear rq_xprt_ctxt, and assert that
the value is now stored in the svc_deferred_req.
|
30 Dec 2025
|
|
|
CVE-2023-54268
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
debugobjects: Don't wake up kswapd from fill_pool()
syzbot is reporting a lockdep warning in fill_pool() because the allocation
from debugobjects is using GFP_ATOMIC, which is (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)
and therefore tries to wake up kswapd, which acquires kswapd_wait::lock.
Since fill_pool() might be called with arbitrary locks held, fill_pool()
should not assume that acquiring kswapd_wait::lock is safe.
Use __GFP_HIGH instead and remove __GFP_NORETRY as it is pointless for
!__GFP_DIRECT_RECLAIM allocation.
|
30 Dec 2025
|
CVE-2023-54281
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
btrfs: release path before inode lookup during the ino lookup ioctl
During the ino lookup ioctl we can end up calling btrfs_iget() to get an
inode reference while we are holding on a root's btree. If btrfs_iget()
needs to lookup the inode from the root's btree, because it's not
currently loaded in memory, then it will need to lock another or the
same path in the same root btree. This may result in a deadlock and
trigger the following lockdep splat:
WARNING: possible circular locking dependency detected
6.5.0-rc7-syzkaller-00004-gf7757129e3de #0 Not tainted
------------------------------------------------------
syz-executor277/5012 is trying to acquire lock:
ffff88802df41710 (btrfs-tree-01){++++}-{3:3}, at: __btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136
but task is already holding lock:
ffff88802df418e8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (btrfs-tree-00){++++}-{3:3}:
down_read_nested+0x49/0x2f0 kernel/locking/rwsem.c:1645
__btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136
btrfs_search_slot+0x13a4/0x2f80 fs/btrfs/ctree.c:2302
btrfs_init_root_free_objectid+0x148/0x320 fs/btrfs/disk-io.c:4955
btrfs_init_fs_root fs/btrfs/disk-io.c:1128 [inline]
btrfs_get_root_ref+0x5ae/0xae0 fs/btrfs/disk-io.c:1338
btrfs_get_fs_root fs/btrfs/disk-io.c:1390 [inline]
open_ctree+0x29c8/0x3030 fs/btrfs/disk-io.c:3494
btrfs_fill_super+0x1c7/0x2f0 fs/btrfs/super.c:1154
btrfs_mount_root+0x7e0/0x910 fs/btrfs/super.c:1519
legacy_get_tree+0xef/0x190 fs/fs_context.c:611
vfs_get_tree+0x8c/0x270 fs/super.c:1519
fc_mount fs/namespace.c:1112 [inline]
vfs_kern_mount+0xbc/0x150 fs/namespace.c:1142
btrfs_mount+0x39f/0xb50 fs/btrfs/super.c:1579
legacy_get_tree+0xef/0x190 fs/fs_context.c:611
vfs_get_tree+0x8c/0x270 fs/super.c:1519
do_new_mount+0x28f/0xae0 fs/namespace.c:3335
do_mount fs/namespace.c:3675 [inline]
__do_sys_mount fs/namespace.c:3884 [inline]
__se_sys_mount+0x2d9/0x3c0 fs/namespace.c:3861
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
-> #0 (btrfs-tree-01){++++}-{3:3}:
check_prev_add kernel/locking/lockdep.c:3142 [inline]
check_prevs_add kernel/locking/lockdep.c:3261 [inline]
validate_chain kernel/locking/lockdep.c:3876 [inline]
__lock_acquire+0x39ff/0x7f70 kernel/locking/lockdep.c:5144
lock_acquire+0x1e3/0x520 kernel/locking/lockdep.c:5761
down_read_nested+0x49/0x2f0 kernel/locking/rwsem.c:1645
__btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136
btrfs_tree_read_lock fs/btrfs/locking.c:142 [inline]
btrfs_read_lock_root_node+0x292/0x3c0 fs/btrfs/locking.c:281
btrfs_search_slot_get_root fs/btrfs/ctree.c:1832 [inline]
btrfs_search_slot+0x4ff/0x2f80 fs/btrfs/ctree.c:2154
btrfs_lookup_inode+0xdc/0x480 fs/btrfs/inode-item.c:412
btrfs_read_locked_inode fs/btrfs/inode.c:3892 [inline]
btrfs_iget_path+0x2d9/0x1520 fs/btrfs/inode.c:5716
btrfs_search_path_in_tree_user fs/btrfs/ioctl.c:1961 [inline]
btrfs_ioctl_ino_lookup_user+0x77a/0xf50 fs/btrfs/ioctl.c:2105
btrfs_ioctl+0xb0b/0xd40 fs/btrfs/ioctl.c:4683
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl+0xf8/0x170 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
other info
---truncated---
CVE-2023-54280
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
cifs: fix potential race when tree connecting ipc
Protect access of TCP_Server_Info::hostname when building the ipc tree
name as it might get freed in cifsd thread and thus causing an
use-after-free bug in __tree_connect_dfs_target(). Also, while at it,
update status of IPC tcon on success and then avoid any extra tree
connects.
CVE-2022-50883
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
bpf: Prevent decl_tag from being referenced in func_proto arg
Syzkaller managed to hit another decl_tag issue:
btf_func_proto_check kernel/bpf/btf.c:4506 [inline]
btf_check_all_types kernel/bpf/btf.c:4734 [inline]
btf_parse_type_sec+0x1175/0x1980 kernel/bpf/btf.c:4763
btf_parse kernel/bpf/btf.c:5042 [inline]
btf_new_fd+0x65a/0xb00 kernel/bpf/btf.c:6709
bpf_btf_load+0x6f/0x90 kernel/bpf/syscall.c:4342
__sys_bpf+0x50a/0x6c0 kernel/bpf/syscall.c:5034
__do_sys_bpf kernel/bpf/syscall.c:5093 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5091 [inline]
__x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5091
do_syscall_64+0x54/0x70 arch/x86/entry/common.c:48
This seems similar to commit ea68376c8bed ("bpf: prevent decl_tag from being
referenced in func_proto") but for the argument.
CVE-2022-50882
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
media: uvcvideo: Fix memory leak in uvc_gpio_parse
Previously the unit buffer was allocated before checking the IRQ for
privacy GPIO. In case of error, the unit buffer was leaked.
Allocate the unit buffer after the IRQ to avoid it.
Addresses-Coverity-ID: 1474639 ("Resource leak")
CVE-2022-50881
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: Fix use-after-free in ath9k_hif_usb_disconnect()
This patch fixes a use-after-free in ath9k that occurs in
ath9k_hif_usb_disconnect() when ath9k_destroy_wmi() is trying to access
'drv_priv' that has already been freed by ieee80211_free_hw(), called by
ath9k_htc_hw_deinit(). The patch moves ath9k_destroy_wmi() before
ieee80211_free_hw(). Note that urbs from the driver should be killed
before freeing 'wmi' with ath9k_destroy_wmi() as their callbacks will
access 'wmi'.
Found by a modified version of syzkaller.
==================================================================
BUG: KASAN: use-after-free in ath9k_destroy_wmi+0x38/0x40
Read of size 8 at addr ffff8881069132a0 by task kworker/0:1/7
CPU: 0 PID: 7 Comm: kworker/0:1 Tainted: G O 5.14.0+ #131
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
Workqueue: usb_hub_wq hub_event
Call Trace:
dump_stack_lvl+0x8e/0xd1
print_address_description.constprop.0.cold+0x93/0x334
? ath9k_destroy_wmi+0x38/0x40
? ath9k_destroy_wmi+0x38/0x40
kasan_report.cold+0x83/0xdf
? ath9k_destroy_wmi+0x38/0x40
ath9k_destroy_wmi+0x38/0x40
ath9k_hif_usb_disconnect+0x329/0x3f0
? ath9k_hif_usb_suspend+0x120/0x120
? usb_disable_interface+0xfc/0x180
usb_unbind_interface+0x19b/0x7e0
? usb_autoresume_device+0x50/0x50
device_release_driver_internal+0x44d/0x520
bus_remove_device+0x2e5/0x5a0
device_del+0x5b2/0xe30
? __device_link_del+0x370/0x370
? usb_remove_ep_devs+0x43/0x80
? remove_intf_ep_devs+0x112/0x1a0
usb_disable_device+0x1e3/0x5a0
usb_disconnect+0x267/0x870
hub_event+0x168d/0x3950
? rcu_read_lock_sched_held+0xa1/0xd0
? hub_port_debounce+0x2e0/0x2e0
? check_irq_usage+0x860/0xf20
? drain_workqueue+0x281/0x360
? lock_release+0x640/0x640
? rcu_read_lock_sched_held+0xa1/0xd0
? rcu_read_lock_bh_held+0xb0/0xb0
? lockdep_hardirqs_on_prepare+0x273/0x3e0
process_one_work+0x92b/0x1460
? pwq_dec_nr_in_flight+0x330/0x330
? rwlock_bug.part.0+0x90/0x90
worker_thread+0x95/0xe00
? __kthread_parkme+0x115/0x1e0
? process_one_work+0x1460/0x1460
kthread+0x3a1/0x480
? set_kthread_struct+0x120/0x120
ret_from_fork+0x1f/0x30
The buggy address belongs to the page:
page:ffffea00041a44c0 refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x106913
flags: 0x200000000000000(node=0|zone=2)
raw: 0200000000000000 0000000000000000 dead000000000122 0000000000000000
raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: kasan: bad access detected
page_owner tracks the page as freed
page last allocated via order 3, migratetype Unmovable, gfp_mask 0x40dc0(GFP_KERNEL|__GFP_COMP|__GFP_ZERO), pid 7, ts 38347963444, free_ts 41399957635
prep_new_page+0x1aa/0x240
get_page_from_freelist+0x159a/0x27c0
__alloc_pages+0x2da/0x6a0
alloc_pages+0xec/0x1e0
kmalloc_order+0x39/0xf0
kmalloc_order_trace+0x19/0x120
__kmalloc+0x308/0x390
wiphy_new_nm+0x6f5/0x1dd0
ieee80211_alloc_hw_nm+0x36d/0x2230
ath9k_htc_probe_device+0x9d/0x1e10
ath9k_htc_hw_init+0x34/0x50
ath9k_hif_usb_firmware_cb+0x25f/0x4e0
request_firmware_work_func+0x131/0x240
process_one_work+0x92b/0x1460
worker_thread+0x95/0xe00
kthread+0x3a1/0x480
page last free stack trace:
free_pcp_prepare+0x3d3/0x7f0
free_unref_page+0x1e/0x3d0
device_release+0xa4/0x240
kobject_put+0x186/0x4c0
put_device+0x20/0x30
ath9k_htc_disconnect_device+0x1cf/0x2c0
ath9k_htc_hw_deinit+0x26/0x30
ath9k_hif_usb_disconnect+0x2d9/0x3f0
usb_unbind_interface+0x19b/0x7e0
device_release_driver_internal+0x44d/0x520
bus_remove_device+0x2e5/0x5a0
device_del+0x5b2/0xe30
usb_disable_device+0x1e3/0x5a0
usb_disconnect+0x267/0x870
hub_event+0x168d/0x3950
process_one_work+0x92b/0x1460
Memory state around the buggy address:
ffff888106913180: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ffff888106913200: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
>ffff888
---truncated---
CVE-2022-50880
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath10k: add peer map clean up for peer delete in ath10k_sta_state()
When peer delete failed in a disconnect operation, use-after-free
detected by KFENCE in below log. It is because for each vdev_id and
address, it has only one struct ath10k_peer, it is allocated in
ath10k_peer_map_event(). When connected to an AP, it has more than
one HTT_T2H_MSG_TYPE_PEER_MAP reported from firmware, then the
array peer_map of struct ath10k will be set muti-elements to the
same ath10k_peer in ath10k_peer_map_event(). When peer delete failed
in ath10k_sta_state(), the ath10k_peer will be free for the 1st peer
id in array peer_map of struct ath10k, and then use-after-free happened
for the 2nd peer id because they map to the same ath10k_peer.
And clean up all peers in array peer_map for the ath10k_peer, then
user-after-free disappeared
peer map event log:
[ 306.911021] wlan0: authenticate with b0:2a:43:e6:75:0e
[ 306.957187] ath10k_pci 0000:01:00.0: mac vdev 0 peer create b0:2a:43:e6:75:0e (new sta) sta 1 / 32 peer 1 / 33
[ 306.957395] ath10k_pci 0000:01:00.0: htt peer map vdev 0 peer b0:2a:43:e6:75:0e id 246
[ 306.957404] ath10k_pci 0000:01:00.0: htt peer map vdev 0 peer b0:2a:43:e6:75:0e id 198
[ 306.986924] ath10k_pci 0000:01:00.0: htt peer map vdev 0 peer b0:2a:43:e6:75:0e id 166
peer unmap event log:
[ 435.715691] wlan0: deauthenticating from b0:2a:43:e6:75:0e by local choice (Reason: 3=DEAUTH_LEAVING)
[ 435.716802] ath10k_pci 0000:01:00.0: mac vdev 0 peer delete b0:2a:43:e6:75:0e sta ffff990e0e9c2b50 (sta gone)
[ 435.717177] ath10k_pci 0000:01:00.0: htt peer unmap vdev 0 peer b0:2a:43:e6:75:0e id 246
[ 435.717186] ath10k_pci 0000:01:00.0: htt peer unmap vdev 0 peer b0:2a:43:e6:75:0e id 198
[ 435.717193] ath10k_pci 0000:01:00.0: htt peer unmap vdev 0 peer b0:2a:43:e6:75:0e id 166
use-after-free log:
[21705.888627] wlan0: deauthenticating from d0:76:8f:82:be:75 by local choice (Reason: 3=DEAUTH_LEAVING)
[21713.799910] ath10k_pci 0000:01:00.0: failed to delete peer d0:76:8f:82:be:75 for vdev 0: -110
[21713.799925] ath10k_pci 0000:01:00.0: found sta peer d0:76:8f:82:be:75 (ptr 0000000000000000 id 102) entry on vdev 0 after it was supposedly removed
[21713.799968] ==================================================================
[21713.799991] BUG: KFENCE: use-after-free read in ath10k_sta_state+0x265/0xb8a [ath10k_core]
[21713.799991]
[21713.799997] Use-after-free read at 0x00000000abe1c75e (in kfence-#69):
[21713.800010] ath10k_sta_state+0x265/0xb8a [ath10k_core]
[21713.800041] drv_sta_state+0x115/0x677 [mac80211]
[21713.800059] __sta_info_destroy_part2+0xb1/0x133 [mac80211]
[21713.800076] __sta_info_flush+0x11d/0x162 [mac80211]
[21713.800093] ieee80211_set_disassoc+0x12d/0x2f4 [mac80211]
[21713.800110] ieee80211_mgd_deauth+0x26c/0x29b [mac80211]
[21713.800137] cfg80211_mlme_deauth+0x13f/0x1bb [cfg80211]
[21713.800153] nl80211_deauthenticate+0xf8/0x121 [cfg80211]
[21713.800161] genl_rcv_msg+0x38e/0x3be
[21713.800166] netlink_rcv_skb+0x89/0xf7
[21713.800171] genl_rcv+0x28/0x36
[21713.800176] netlink_unicast+0x179/0x24b
[21713.800181] netlink_sendmsg+0x3a0/0x40e
[21713.800187] sock_sendmsg+0x72/0x76
[21713.800192] ____sys_sendmsg+0x16d/0x1e3
[21713.800196] ___sys_sendmsg+0x95/0xd1
[21713.800200] __sys_sendmsg+0x85/0xbf
[21713.800205] do_syscall_64+0x43/0x55
[21713.800210] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[21713.800213]
[21713.800219] kfence-#69: 0x000000009149b0d5-0x000000004c0697fb, size=1064, cache=kmalloc-2k
[21713.800219]
[21713.800224] allocated by task 13 on cpu 0 at 21705.501373s:
[21713.800241] ath10k_peer_map_event+0x7e/0x154 [ath10k_core]
[21713.800254] ath10k_htt_t2h_msg_handler+0x586/0x1039 [ath10k_core]
[21713.800265] ath10k_htt_htc_t2h_msg_handler+0x12/0x28 [ath10k_core]
[21713.800277] ath10k_htc_rx_completion_handler+0x14c/0x1b5 [ath10k_core]
[21713.800283] ath10k_pci_process_rx_cb+0x195/0x1d
---truncated---
CVE-2022-50879
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
objtool: Fix SEGFAULT
find_insn() will return NULL in case of failure. Check insn in order
to avoid a kernel Oops for NULL pointer dereference.
CVE-2022-50878
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
gpu: lontium-lt9611: Fix NULL pointer dereference in lt9611_connector_init()
A NULL check for bridge->encoder shows that it may be NULL, but it
already been dereferenced on all paths leading to the check.
812 if (!bridge->encoder) {
Dereference the pointer bridge->encoder.
810 drm_connector_attach_encoder(<9611->connector, bridge->encoder);
CVE-2022-50877
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
net: broadcom: bcm4908_enet: update TX stats after actual transmission
Queueing packets doesn't guarantee their transmission. Update TX stats
after hardware confirms consuming submitted data.
This also fixes a possible race and NULL dereference.
bcm4908_enet_start_xmit() could try to access skb after freeing it in
the bcm4908_enet_poll_tx().
CVE-2022-50876
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
usb: musb: Fix musb_gadget.c rxstate overflow bug
The usb function device call musb_gadget_queue() adds the passed
request to musb_ep::req_list,If the (request->length > musb_ep->packet_sz)
and (is_buffer_mapped(req) return false),the rxstate() will copy all data
in fifo to request->buf which may cause request->buf out of bounds.
Fix it by add the length check :
fifocnt = min_t(unsigned, request->length - request->actual, fifocnt);
CVE-2022-50875
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
of: overlay: fix null pointer dereferencing in find_dup_cset_node_entry() and find_dup_cset_prop()
When kmalloc() fail to allocate memory in kasprintf(), fn_1 or fn_2 will
be NULL, and strcmp() will cause null pointer dereference.
CVE-2022-50874
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
RDMA/erdma: Fix refcount leak in erdma_mmap
rdma_user_mmap_entry_get() take reference, we should release it when not
need anymore, add the missing rdma_user_mmap_entry_put() in the error
path to fix it.
CVE-2025-14426
MEDIUM
30 Dec 2025
The Strong Testimonials plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check in the 'edit_rating' function in all versions up to, and including, 3.2.18. This makes it possible for authenticated attackers with Contributor-level access and above to modify or delete the rating meta on any testimonial post, including those created by other users, by reusing a valid nonce obtained from their own testimonial edit screen.
CVE-2023-54279
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
MIPS: fw: Allow firmware to pass a empty env
fw_getenv will use env entry to determine style of env,
however it is legal for firmware to just pass a empty list.
Check if first entry exist before running strchr to avoid
null pointer dereference.
CVE-2023-54278
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
s390/vmem: split pages when debug pagealloc is enabled
Since commit bb1520d581a3 ("s390/mm: start kernel with DAT enabled")
the kernel crashes early during boot when debug pagealloc is enabled:
mem auto-init: stack:off, heap alloc:off, heap free:off
addressing exception: 0005 ilc:2 [#1] SMP DEBUG_PAGEALLOC
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Not tainted 6.5.0-rc3-09759-gc5666c912155 #630
[..]
Krnl Code: 00000000001325f6: ec5600248064 cgrj %r5,%r6,8,000000000013263e
00000000001325fc: eb880002000c srlg %r8,%r8,2
#0000000000132602: b2210051 ipte %r5,%r1,%r0,0
>0000000000132606: b90400d1 lgr %r13,%r1
000000000013260a: 41605008 la %r6,8(%r5)
000000000013260e: a7db1000 aghi %r13,4096
0000000000132612: b221006d ipte %r6,%r13,%r0,0
0000000000132616: e3d0d0000171 lay %r13,4096(%r13)
Call Trace:
__kernel_map_pages+0x14e/0x320
__free_pages_ok+0x23a/0x5a8)
free_low_memory_core_early+0x214/0x2c8
memblock_free_all+0x28/0x58
mem_init+0xb6/0x228
mm_core_init+0xb6/0x3b0
start_kernel+0x1d2/0x5a8
startup_continue+0x36/0x40
Kernel panic - not syncing: Fatal exception: panic_on_oops
This is caused by using large mappings on machines with EDAT1/EDAT2. Add
the code to split the mappings into 4k pages if debug pagealloc is enabled
by CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT or the debug_pagealloc kernel
command line option.
CVE-2023-54277
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
fbdev: udlfb: Fix endpoint check
The syzbot fuzzer detected a problem in the udlfb driver, caused by an
endpoint not having the expected type:
usb 1-1: Read EDID byte 0 failed: -71
usb 1-1: Unable to get valid EDID from device/display
------------[ cut here ]------------
usb 1-1: BOGUS urb xfer, pipe 3 != type 1
WARNING: CPU: 0 PID: 9 at drivers/usb/core/urb.c:504 usb_submit_urb+0xed6/0x1880
drivers/usb/core/urb.c:504
Modules linked in:
CPU: 0 PID: 9 Comm: kworker/0:1 Not tainted
6.4.0-rc1-syzkaller-00016-ga4422ff22142 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google
04/28/2023
Workqueue: usb_hub_wq hub_event
RIP: 0010:usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504
...
Call Trace:
<TASK>
dlfb_submit_urb+0x92/0x180 drivers/video/fbdev/udlfb.c:1980
dlfb_set_video_mode+0x21f0/0x2950 drivers/video/fbdev/udlfb.c:315
dlfb_ops_set_par+0x2a7/0x8d0 drivers/video/fbdev/udlfb.c:1111
dlfb_usb_probe+0x149a/0x2710 drivers/video/fbdev/udlfb.c:1743
The current approach for this issue failed to catch the problem
because it only checks for the existence of a bulk-OUT endpoint; it
doesn't check whether this endpoint is the one that the driver will
actually use.
We can fix the problem by instead checking that the endpoint used by
the driver does exist and is bulk-OUT.
CVE-2023-54276
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
nfsd: move init of percpu reply_cache_stats counters back to nfsd_init_net
Commit f5f9d4a314da ("nfsd: move reply cache initialization into nfsd
startup") moved the initialization of the reply cache into nfsd startup,
but didn't account for the stats counters, which can be accessed before
nfsd is ever started. The result can be a NULL pointer dereference when
someone accesses /proc/fs/nfsd/reply_cache_stats while nfsd is still
shut down.
This is a regression and a user-triggerable oops in the right situation:
- non-x86_64 arch
- /proc/fs/nfsd is mounted in the namespace
- nfsd is not started in the namespace
- unprivileged user calls "cat /proc/fs/nfsd/reply_cache_stats"
Although this is easy to trigger on some arches (like aarch64), on
x86_64, calling this_cpu_ptr(NULL) evidently returns a pointer to the
fixed_percpu_data. That struct looks just enough like a newly
initialized percpu var to allow nfsd_reply_cache_stats_show to access
it without Oopsing.
Move the initialization of the per-net+per-cpu reply-cache counters
back into nfsd_init_net, while leaving the rest of the reply cache
allocations to be done at nfsd startup time.
Kudos to Eirik who did most of the legwork to track this down.
CVE-2023-54275
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: Fix memory leak in ath11k_peer_rx_frag_setup
crypto_alloc_shash() allocates resources, which should be released by
crypto_free_shash(). When ath11k_peer_find() fails, there has memory
leak. Add missing crypto_free_shash() to fix this.
CVE-2023-54274
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
RDMA/srpt: Add a check for valid 'mad_agent' pointer
When unregistering MAD agent, srpt module has a non-null check
for 'mad_agent' pointer before invoking ib_unregister_mad_agent().
This check can pass if 'mad_agent' variable holds an error value.
The 'mad_agent' can have an error value for a short window when
srpt_add_one() and srpt_remove_one() is executed simultaneously.
In srpt module, added a valid pointer check for 'sport->mad_agent'
before unregistering MAD agent.
This issue can hit when RoCE driver unregisters ib_device
Stack Trace:
------------
BUG: kernel NULL pointer dereference, address: 000000000000004d
PGD 145003067 P4D 145003067 PUD 2324fe067 PMD 0
Oops: 0002 [#1] PREEMPT SMP NOPTI
CPU: 10 PID: 4459 Comm: kworker/u80:0 Kdump: loaded Tainted: P
Hardware name: Dell Inc. PowerEdge R640/06NR82, BIOS 2.5.4 01/13/2020
Workqueue: bnxt_re bnxt_re_task [bnxt_re]
RIP: 0010:_raw_spin_lock_irqsave+0x19/0x40
Call Trace:
ib_unregister_mad_agent+0x46/0x2f0 [ib_core]
IPv6: ADDRCONF(NETDEV_CHANGE): bond0: link becomes ready
? __schedule+0x20b/0x560
srpt_unregister_mad_agent+0x93/0xd0 [ib_srpt]
srpt_remove_one+0x20/0x150 [ib_srpt]
remove_client_context+0x88/0xd0 [ib_core]
bond0: (slave p2p1): link status definitely up, 100000 Mbps full duplex
disable_device+0x8a/0x160 [ib_core]
bond0: active interface up!
? kernfs_name_hash+0x12/0x80
(NULL device *): Bonding Info Received: rdev: 000000006c0b8247
__ib_unregister_device+0x42/0xb0 [ib_core]
(NULL device *): Master: mode: 4 num_slaves:2
ib_unregister_device+0x22/0x30 [ib_core]
(NULL device *): Slave: id: 105069936 name:p2p1 link:0 state:0
bnxt_re_stopqps_and_ib_uninit+0x83/0x90 [bnxt_re]
bnxt_re_alloc_lag+0x12e/0x4e0 [bnxt_re]
CVE-2023-54273
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
xfrm: Fix leak of dev tracker
At the stage of direction checks, the netdev reference tracker is
already initialized, but released with wrong *_put() call.
CVE-2023-54272
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix a possible null-pointer dereference in ni_clear()
In a previous commit c1006bd13146, ni->mi.mrec in ni_write_inode()
could be NULL, and thus a NULL check is added for this variable.
However, in the same call stack, ni->mi.mrec can be also dereferenced
in ni_clear():
ntfs_evict_inode(inode)
ni_write_inode(inode, ...)
ni = ntfs_i(inode);
is_rec_inuse(ni->mi.mrec) -> Add a NULL check by previous commit
ni_clear(ntfs_i(inode))
is_rec_inuse(ni->mi.mrec) -> No check
Thus, a possible null-pointer dereference may exist in ni_clear().
To fix it, a NULL check is added in this function.
CVE-2023-54271
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
blk-cgroup: Fix NULL deref caused by blkg_policy_data being installed before init
blk-iocost sometimes causes the following crash:
BUG: kernel NULL pointer dereference, address: 00000000000000e0
...
RIP: 0010:_raw_spin_lock+0x17/0x30
Code: be 01 02 00 00 e8 79 38 39 ff 31 d2 89 d0 5d c3 0f 1f 00 0f 1f 44 00 00 55 48 89 e5 65 ff 05 48 d0 34 7e b9 01 00 00 00 31 c0 <f0> 0f b1 0f 75 02 5d c3 89 c6 e8 ea 04 00 00 5d c3 0f 1f 84 00 00
RSP: 0018:ffffc900023b3d40 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 00000000000000e0 RCX: 0000000000000001
RDX: ffffc900023b3d20 RSI: ffffc900023b3cf0 RDI: 00000000000000e0
RBP: ffffc900023b3d40 R08: ffffc900023b3c10 R09: 0000000000000003
R10: 0000000000000064 R11: 000000000000000a R12: ffff888102337000
R13: fffffffffffffff2 R14: ffff88810af408c8 R15: ffff8881070c3600
FS: 00007faaaf364fc0(0000) GS:ffff88842fdc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000000000e0 CR3: 00000001097b1000 CR4: 0000000000350ea0
Call Trace:
<TASK>
ioc_weight_write+0x13d/0x410
cgroup_file_write+0x7a/0x130
kernfs_fop_write_iter+0xf5/0x170
vfs_write+0x298/0x370
ksys_write+0x5f/0xb0
__x64_sys_write+0x1b/0x20
do_syscall_64+0x3d/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
This happens because iocg->ioc is NULL. The field is initialized by
ioc_pd_init() and never cleared. The NULL deref is caused by
blkcg_activate_policy() installing blkg_policy_data before initializing it.
blkcg_activate_policy() was doing the following:
1. Allocate pd's for all existing blkg's and install them in blkg->pd[].
2. Initialize all pd's.
3. Online all pd's.
blkcg_activate_policy() only grabs the queue_lock and may release and
re-acquire the lock as allocation may need to sleep. ioc_weight_write()
grabs blkcg->lock and iterates all its blkg's. The two can race and if
ioc_weight_write() runs during #1 or between #1 and #2, it can encounter a
pd which is not initialized yet, leading to crash.
The crash can be reproduced with the following script:
#!/bin/bash
echo +io > /sys/fs/cgroup/cgroup.subtree_control
systemd-run --unit touch-sda --scope dd if=/dev/sda of=/dev/null bs=1M count=1 iflag=direct
echo 100 > /sys/fs/cgroup/system.slice/io.weight
bash -c "echo '8:0 enable=1' > /sys/fs/cgroup/io.cost.qos" &
sleep .2
echo 100 > /sys/fs/cgroup/system.slice/io.weight
with the following patch applied:
> diff --git a/block/blk-cgroup.c b/block/blk-cgroup.c
> index fc49be622e05..38d671d5e10c 100644
> --- a/block/blk-cgroup.c
> +++ b/block/blk-cgroup.c
> @@ -1553,6 +1553,12 @@ int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
> pd->online = false;
> }
>
> + if (system_state == SYSTEM_RUNNING) {
> + spin_unlock_irq(&q->queue_lock);
> + ssleep(1);
> + spin_lock_irq(&q->queue_lock);
> + }
> +
> /* all allocated, init in the same order */
> if (pol->pd_init_fn)
> list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
I don't see a reason why all pd's should be allocated, initialized and
onlined together. The only ordering requirement is that parent blkgs to be
initialized and onlined before children, which is guaranteed from the
walking order. Let's fix the bug by allocating, initializing and onlining pd
for each blkg and holding blkcg->lock over initialization and onlining. This
ensures that an installed blkg is always fully initialized and onlined
removing the the race window.
CVE-2023-54270
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
media: usb: siano: Fix use after free bugs caused by do_submit_urb
There are UAF bugs caused by do_submit_urb(). One of the KASan reports
is shown below:
[ 36.403605] BUG: KASAN: use-after-free in worker_thread+0x4a2/0x890
[ 36.406105] Read of size 8 at addr ffff8880059600e8 by task kworker/0:2/49
[ 36.408316]
[ 36.408867] CPU: 0 PID: 49 Comm: kworker/0:2 Not tainted 6.2.0-rc3-15798-g5a41237ad1d4-dir8
[ 36.411696] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g15584
[ 36.416157] Workqueue: 0x0 (events)
[ 36.417654] Call Trace:
[ 36.418546] <TASK>
[ 36.419320] dump_stack_lvl+0x96/0xd0
[ 36.420522] print_address_description+0x75/0x350
[ 36.421992] print_report+0x11b/0x250
[ 36.423174] ? _raw_spin_lock_irqsave+0x87/0xd0
[ 36.424806] ? __virt_addr_valid+0xcf/0x170
[ 36.426069] ? worker_thread+0x4a2/0x890
[ 36.427355] kasan_report+0x131/0x160
[ 36.428556] ? worker_thread+0x4a2/0x890
[ 36.430053] worker_thread+0x4a2/0x890
[ 36.431297] ? worker_clr_flags+0x90/0x90
[ 36.432479] kthread+0x166/0x190
[ 36.433493] ? kthread_blkcg+0x50/0x50
[ 36.434669] ret_from_fork+0x22/0x30
[ 36.435923] </TASK>
[ 36.436684]
[ 36.437215] Allocated by task 24:
[ 36.438289] kasan_set_track+0x50/0x80
[ 36.439436] __kasan_kmalloc+0x89/0xa0
[ 36.440566] smsusb_probe+0x374/0xc90
[ 36.441920] usb_probe_interface+0x2d1/0x4c0
[ 36.443253] really_probe+0x1d5/0x580
[ 36.444539] __driver_probe_device+0xe3/0x130
[ 36.446085] driver_probe_device+0x49/0x220
[ 36.447423] __device_attach_driver+0x19e/0x1b0
[ 36.448931] bus_for_each_drv+0xcb/0x110
[ 36.450217] __device_attach+0x132/0x1f0
[ 36.451470] bus_probe_device+0x59/0xf0
[ 36.452563] device_add+0x4ec/0x7b0
[ 36.453830] usb_set_configuration+0xc63/0xe10
[ 36.455230] usb_generic_driver_probe+0x3b/0x80
[ 36.456166] printk: console [ttyGS0] disabled
[ 36.456569] usb_probe_device+0x90/0x110
[ 36.459523] really_probe+0x1d5/0x580
[ 36.461027] __driver_probe_device+0xe3/0x130
[ 36.462465] driver_probe_device+0x49/0x220
[ 36.463847] __device_attach_driver+0x19e/0x1b0
[ 36.465229] bus_for_each_drv+0xcb/0x110
[ 36.466466] __device_attach+0x132/0x1f0
[ 36.467799] bus_probe_device+0x59/0xf0
[ 36.469010] device_add+0x4ec/0x7b0
[ 36.470125] usb_new_device+0x863/0xa00
[ 36.471374] hub_event+0x18c7/0x2220
[ 36.472746] process_one_work+0x34c/0x5b0
[ 36.474041] worker_thread+0x4b7/0x890
[ 36.475216] kthread+0x166/0x190
[ 36.476267] ret_from_fork+0x22/0x30
[ 36.477447]
[ 36.478160] Freed by task 24:
[ 36.479239] kasan_set_track+0x50/0x80
[ 36.480512] kasan_save_free_info+0x2b/0x40
[ 36.481808] ____kasan_slab_free+0x122/0x1a0
[ 36.483173] __kmem_cache_free+0xc4/0x200
[ 36.484563] smsusb_term_device+0xcd/0xf0
[ 36.485896] smsusb_probe+0xc85/0xc90
[ 36.486976] usb_probe_interface+0x2d1/0x4c0
[ 36.488303] really_probe+0x1d5/0x580
[ 36.489498] __driver_probe_device+0xe3/0x130
[ 36.491140] driver_probe_device+0x49/0x220
[ 36.492475] __device_attach_driver+0x19e/0x1b0
[ 36.493988] bus_for_each_drv+0xcb/0x110
[ 36.495171] __device_attach+0x132/0x1f0
[ 36.496617] bus_probe_device+0x59/0xf0
[ 36.497875] device_add+0x4ec/0x7b0
[ 36.498972] usb_set_configuration+0xc63/0xe10
[ 36.500264] usb_generic_driver_probe+0x3b/0x80
[ 36.501740] usb_probe_device+0x90/0x110
[ 36.503084] really_probe+0x1d5/0x580
[ 36.504241] __driver_probe_device+0xe3/0x130
[ 36.505548] driver_probe_device+0x49/0x220
[ 36.506766] __device_attach_driver+0x19e/0x1b0
[ 36.508368] bus_for_each_drv+0xcb/0x110
[ 36.509646] __device_attach+0x132/0x1f0
[ 36.510911] bus_probe_device+0x59/0xf0
[ 36.512103] device_add+0x4ec/0x7b0
[ 36.513215] usb_new_device+0x863/0xa00
[ 36.514736] hub_event+0x18c7/0x2220
[ 36.516130] process_one_work+
---truncated---
CVE-2023-54269
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: double free xprt_ctxt while still in use
When an RPC request is deferred, the rq_xprt_ctxt pointer is moved out
of the svc_rqst into the svc_deferred_req.
When the deferred request is revisited, the pointer is copied into
the new svc_rqst - and also remains in the svc_deferred_req.
In the (rare?) case that the request is deferred a second time, the old
svc_deferred_req is reused - it still has all the correct content.
However in that case the rq_xprt_ctxt pointer is NOT cleared so that
when xpo_release_xprt is called, the ctxt is freed (UDP) or possible
added to a free list (RDMA).
When the deferred request is revisited for a second time, it will
reference this ctxt which may be invalid, and the free the object a
second time which is likely to oops.
So change svc_defer() to *always* clear rq_xprt_ctxt, and assert that
the value is now stored in the svc_deferred_req.
CVE-2023-54268
N/A
30 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
debugobjects: Don't wake up kswapd from fill_pool()
syzbot is reporting a lockdep warning in fill_pool() because the allocation
from debugobjects is using GFP_ATOMIC, which is (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)
and therefore tries to wake up kswapd, which acquires kswapd_wait::lock.
Since fill_pool() might be called with arbitrary locks held, fill_pool()
should not assume that acquiring kswapd_wait::lock is safe.
Use __GFP_HIGH instead and remove __GFP_NORETRY as it is pointless for
!__GFP_DIRECT_RECLAIM allocation.
Page 117 of 670
Page 117 of 670