CVE Monitor
CVE-2023-54053
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: pcie: fix possible NULL pointer dereference It is possible that iwl_pci_probe() will fail and free the trans, then afterwards iwl_pci_remove() will be called and crash by trying to access trans which is already freed, fix it. iwlwifi 0000:01:00.0: Detected crf-id 0xa5a5a5a2, cnv-id 0xa5a5a5a2 wfpm id 0xa5a5a5a2 iwlwifi 0000:01:00.0: Can't find a correct rfid for crf id 0x5a2 ... BUG: kernel NULL pointer dereference, address: 0000000000000028 ... RIP: 0010:iwl_pci_remove+0x12/0x30 [iwlwifi] pci_device_remove+0x3e/0xb0 device_release_driver_internal+0x103/0x1f0 driver_detach+0x4c/0x90 bus_remove_driver+0x5c/0xd0 driver_unregister+0x31/0x50 pci_unregister_driver+0x40/0x90 iwl_pci_unregister_driver+0x15/0x20 [iwlwifi] __exit_compat+0x9/0x98 [iwlwifi] __x64_sys_delete_module+0x147/0x260
CVE-2023-54047
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: drm/rockchip: dw_hdmi: cleanup drm encoder during unbind This fixes a use-after-free crash during rmmod. The DRM encoder is embedded inside the larger rockchip_hdmi, which is allocated with the component. The component memory gets freed before the main drm device is destroyed. Fix it by running encoder cleanup before tearing down its container. [moved encoder cleanup above clk_disable, similar to bind-error-path]
CVE-2022-50735
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: do not run mt76u_status_worker if the device is not running Fix the following NULL pointer dereference avoiding to run mt76u_status_worker thread if the device is not running yet. KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 0 PID: 98 Comm: kworker/u2:2 Not tainted 5.14.0+ #78 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 Workqueue: mt76 mt76u_tx_status_data RIP: 0010:mt76x02_mac_fill_tx_status.isra.0+0x82c/0x9e0 Code: c5 48 b8 00 00 00 00 00 fc ff df 80 3c 02 00 0f 85 94 01 00 00 48 b8 00 00 00 00 00 fc ff df 4d 8b 34 24 4c 89 f2 48 c1 ea 03 <0f> b6 04 02 84 c0 74 08 3c 03 0f 8e 89 01 00 00 41 8b 16 41 0f b7 RSP: 0018:ffffc900005af988 EFLAGS: 00010246 RAX: dffffc0000000000 RBX: ffffc900005afae8 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff832fc661 RDI: ffffc900005afc2a RBP: ffffc900005afae0 R08: 0000000000000001 R09: fffff520000b5f3c R10: 0000000000000003 R11: fffff520000b5f3b R12: ffff88810b6132d8 R13: 000000000000ffff R14: 0000000000000000 R15: ffffc900005afc28 FS: 0000000000000000(0000) GS:ffff88811aa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa0eda6a000 CR3: 0000000118f17000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: mt76x02_send_tx_status+0x1d2/0xeb0 mt76x02_tx_status_data+0x8e/0xd0 mt76u_tx_status_data+0xe1/0x240 process_one_work+0x92b/0x1460 worker_thread+0x95/0xe00 kthread+0x3a1/0x480 ret_from_fork+0x1f/0x30 Modules linked in: --[ end trace 8df5d20fc5040f65 ]-- RIP: 0010:mt76x02_mac_fill_tx_status.isra.0+0x82c/0x9e0 Code: c5 48 b8 00 00 00 00 00 fc ff df 80 3c 02 00 0f 85 94 01 00 00 48 b8 00 00 00 00 00 fc ff df 4d 8b 34 24 4c 89 f2 48 c1 ea 03 <0f> b6 04 02 84 c0 74 08 3c 03 0f 8e 89 01 00 00 41 8b 16 41 0f b7 RSP: 0018:ffffc900005af988 EFLAGS: 00010246 RAX: dffffc0000000000 RBX: ffffc900005afae8 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff832fc661 RDI: ffffc900005afc2a RBP: ffffc900005afae0 R08: 0000000000000001 R09: fffff520000b5f3c R10: 0000000000000003 R11: fffff520000b5f3b R12: ffff88810b6132d8 R13: 000000000000ffff R14: 0000000000000000 R15: ffffc900005afc28 FS: 0000000000000000(0000) GS:ffff88811aa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa0eda6a000 CR3: 0000000118f17000 CR4: 0000000000750ef0 PKRU: 55555554 Moreover move stat_work schedule out of the for loop.
CVE-2022-50733
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: usb: idmouse: fix an uninit-value in idmouse_open In idmouse_create_image, if any ftip_command fails, it will go to the reset label. However, this leads to the data in bulk_in_buffer[HEADER..IMGSIZE] uninitialized. And the check for valid image incurs an uninitialized dereference. Fix this by moving the check before reset label since this check only be valid if the data after bulk_in_buffer[HEADER] has concrete data. Note that this is found by KMSAN, so only kernel compilation is tested.
CVE-2022-50728
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: s390/lcs: Fix return type of lcs_start_xmit() With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG), indirect call targets are validated against the expected function pointer prototype to make sure the call target is valid to help mitigate ROP attacks. If they are not identical, there is a failure at run time, which manifests as either a kernel panic or thread getting killed. A proposed warning in clang aims to catch these at compile time, which reveals: drivers/s390/net/lcs.c:2090:21: error: incompatible function pointer types initializing 'netdev_tx_t (*)(struct sk_buff *, struct net_device *)' (aka 'enum netdev_tx (*)(struct sk_buff *, struct net_device *)') with an expression of type 'int (struct sk_buff *, struct net_device *)' [-Werror,-Wincompatible-function-pointer-types-strict] .ndo_start_xmit = lcs_start_xmit, ^~~~~~~~~~~~~~ drivers/s390/net/lcs.c:2097:21: error: incompatible function pointer types initializing 'netdev_tx_t (*)(struct sk_buff *, struct net_device *)' (aka 'enum netdev_tx (*)(struct sk_buff *, struct net_device *)') with an expression of type 'int (struct sk_buff *, struct net_device *)' [-Werror,-Wincompatible-function-pointer-types-strict] .ndo_start_xmit = lcs_start_xmit, ^~~~~~~~~~~~~~ ->ndo_start_xmit() in 'struct net_device_ops' expects a return type of 'netdev_tx_t', not 'int'. Adjust the return type of lcs_start_xmit() to match the prototype's to resolve the warning and potential CFI failure, should s390 select ARCH_SUPPORTS_CFI_CLANG in the future.
CVE-2022-50720
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: x86/apic: Don't disable x2APIC if locked The APIC supports two modes, legacy APIC (or xAPIC), and Extended APIC (or x2APIC). X2APIC mode is mostly compatible with legacy APIC, but it disables the memory-mapped APIC interface in favor of one that uses MSRs. The APIC mode is controlled by the EXT bit in the APIC MSR. The MMIO/xAPIC interface has some problems, most notably the APIC LEAK [1]. This bug allows an attacker to use the APIC MMIO interface to extract data from the SGX enclave. Introduce support for a new feature that will allow the BIOS to lock the APIC in x2APIC mode. If the APIC is locked in x2APIC mode and the kernel tries to disable the APIC or revert to legacy APIC mode a GP fault will occur. Introduce support for a new MSR (IA32_XAPIC_DISABLE_STATUS) and handle the new locked mode when the LEGACY_XAPIC_DISABLED bit is set by preventing the kernel from trying to disable the x2APIC. On platforms with the IA32_XAPIC_DISABLE_STATUS MSR, if SGX or TDX are enabled the LEGACY_XAPIC_DISABLED will be set by the BIOS. If legacy APIC is required, then it SGX and TDX need to be disabled in the BIOS. [1]: https://aepicleak.com/aepicleak.pdf
CVE-2022-50719
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: ALSA: line6: fix stack overflow in line6_midi_transmit Correctly calculate available space including the size of the chunk buffer. This fixes a buffer overflow when multiple MIDI sysex messages are sent to a PODxt device.
CVE-2022-50717
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: nvmet-tcp: add bounds check on Transfer Tag ttag is used as an index to get cmd in nvmet_tcp_handle_h2c_data_pdu(), add a bounds check to avoid out-of-bounds access.
CVE-2022-50716
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: wifi: ar5523: Fix use-after-free on ar5523_cmd() timed out syzkaller reported use-after-free with the stack trace like below [1]: [ 38.960489][ C3] ================================================================== [ 38.963216][ C3] BUG: KASAN: use-after-free in ar5523_cmd_tx_cb+0x220/0x240 [ 38.964950][ C3] Read of size 8 at addr ffff888048e03450 by task swapper/3/0 [ 38.966363][ C3] [ 38.967053][ C3] CPU: 3 PID: 0 Comm: swapper/3 Not tainted 6.0.0-09039-ga6afa4199d3d-dirty #18 [ 38.968464][ C3] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014 [ 38.969959][ C3] Call Trace: [ 38.970841][ C3] <IRQ> [ 38.971663][ C3] dump_stack_lvl+0xfc/0x174 [ 38.972620][ C3] print_report.cold+0x2c3/0x752 [ 38.973626][ C3] ? ar5523_cmd_tx_cb+0x220/0x240 [ 38.974644][ C3] kasan_report+0xb1/0x1d0 [ 38.975720][ C3] ? ar5523_cmd_tx_cb+0x220/0x240 [ 38.976831][ C3] ar5523_cmd_tx_cb+0x220/0x240 [ 38.978412][ C3] __usb_hcd_giveback_urb+0x353/0x5b0 [ 38.979755][ C3] usb_hcd_giveback_urb+0x385/0x430 [ 38.981266][ C3] dummy_timer+0x140c/0x34e0 [ 38.982925][ C3] ? notifier_call_chain+0xb5/0x1e0 [ 38.984761][ C3] ? rcu_read_lock_sched_held+0xb/0x60 [ 38.986242][ C3] ? lock_release+0x51c/0x790 [ 38.987323][ C3] ? _raw_read_unlock_irqrestore+0x37/0x70 [ 38.988483][ C3] ? __wake_up_common_lock+0xde/0x130 [ 38.989621][ C3] ? reacquire_held_locks+0x4a0/0x4a0 [ 38.990777][ C3] ? lock_acquire+0x472/0x550 [ 38.991919][ C3] ? rcu_read_lock_sched_held+0xb/0x60 [ 38.993138][ C3] ? lock_acquire+0x472/0x550 [ 38.994890][ C3] ? dummy_urb_enqueue+0x860/0x860 [ 38.996266][ C3] ? do_raw_spin_unlock+0x16f/0x230 [ 38.997670][ C3] ? dummy_urb_enqueue+0x860/0x860 [ 38.999116][ C3] call_timer_fn+0x1a0/0x6a0 [ 39.000668][ C3] ? add_timer_on+0x4a0/0x4a0 [ 39.002137][ C3] ? reacquire_held_locks+0x4a0/0x4a0 [ 39.003809][ C3] ? __next_timer_interrupt+0x226/0x2a0 [ 39.005509][ C3] __run_timers.part.0+0x69a/0xac0 [ 39.007025][ C3] ? dummy_urb_enqueue+0x860/0x860 [ 39.008716][ C3] ? call_timer_fn+0x6a0/0x6a0 [ 39.010254][ C3] ? cpuacct_percpu_seq_show+0x10/0x10 [ 39.011795][ C3] ? kvm_sched_clock_read+0x14/0x40 [ 39.013277][ C3] ? sched_clock_cpu+0x69/0x2b0 [ 39.014724][ C3] run_timer_softirq+0xb6/0x1d0 [ 39.016196][ C3] __do_softirq+0x1d2/0x9be [ 39.017616][ C3] __irq_exit_rcu+0xeb/0x190 [ 39.019004][ C3] irq_exit_rcu+0x5/0x20 [ 39.020361][ C3] sysvec_apic_timer_interrupt+0x8f/0xb0 [ 39.021965][ C3] </IRQ> [ 39.023237][ C3] <TASK> In ar5523_probe(), ar5523_host_available() calls ar5523_cmd() as below (there are other functions which finally call ar5523_cmd()): ar5523_probe() -> ar5523_host_available() -> ar5523_cmd_read() -> ar5523_cmd() If ar5523_cmd() timed out, then ar5523_host_available() failed and ar5523_probe() freed the device structure. So, ar5523_cmd_tx_cb() might touch the freed structure. This patch fixes this issue by canceling in-flight tx cmd if submitted urb timed out.
CVE-2022-50715
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: md/raid1: stop mdx_raid1 thread when raid1 array run failed fail run raid1 array when we assemble array with the inactive disk only, but the mdx_raid1 thread were not stop, Even if the associated resources have been released. it will caused a NULL dereference when we do poweroff. This causes the following Oops: [ 287.587787] BUG: kernel NULL pointer dereference, address: 0000000000000070 [ 287.594762] #PF: supervisor read access in kernel mode [ 287.599912] #PF: error_code(0x0000) - not-present page [ 287.605061] PGD 0 P4D 0 [ 287.607612] Oops: 0000 [#1] SMP NOPTI [ 287.611287] CPU: 3 PID: 5265 Comm: md0_raid1 Tainted: G U 5.10.146 #0 [ 287.619029] Hardware name: xxxxxxx/To be filled by O.E.M, BIOS 5.19 06/16/2022 [ 287.626775] RIP: 0010:md_check_recovery+0x57/0x500 [md_mod] [ 287.632357] Code: fe 01 00 00 48 83 bb 10 03 00 00 00 74 08 48 89 ...... [ 287.651118] RSP: 0018:ffffc90000433d78 EFLAGS: 00010202 [ 287.656347] RAX: 0000000000000000 RBX: ffff888105986800 RCX: 0000000000000000 [ 287.663491] RDX: ffffc90000433bb0 RSI: 00000000ffffefff RDI: ffff888105986800 [ 287.670634] RBP: ffffc90000433da0 R08: 0000000000000000 R09: c0000000ffffefff [ 287.677771] R10: 0000000000000001 R11: ffffc90000433ba8 R12: ffff888105986800 [ 287.684907] R13: 0000000000000000 R14: fffffffffffffe00 R15: ffff888100b6b500 [ 287.692052] FS: 0000000000000000(0000) GS:ffff888277f80000(0000) knlGS:0000000000000000 [ 287.700149] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 287.705897] CR2: 0000000000000070 CR3: 000000000320a000 CR4: 0000000000350ee0 [ 287.713033] Call Trace: [ 287.715498] raid1d+0x6c/0xbbb [raid1] [ 287.719256] ? __schedule+0x1ff/0x760 [ 287.722930] ? schedule+0x3b/0xb0 [ 287.726260] ? schedule_timeout+0x1ed/0x290 [ 287.730456] ? __switch_to+0x11f/0x400 [ 287.734219] md_thread+0xe9/0x140 [md_mod] [ 287.738328] ? md_thread+0xe9/0x140 [md_mod] [ 287.742601] ? wait_woken+0x80/0x80 [ 287.746097] ? md_register_thread+0xe0/0xe0 [md_mod] [ 287.751064] kthread+0x11a/0x140 [ 287.754300] ? kthread_park+0x90/0x90 [ 287.757974] ret_from_fork+0x1f/0x30 In fact, when raid1 array run fail, we need to do md_unregister_thread() before raid1_free().
CVE-2025-68746
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: spi: tegra210-quad: Fix timeout handling When the CPU that the QSPI interrupt handler runs on (typically CPU 0) is excessively busy, it can lead to rare cases of the IRQ thread not running before the transfer timeout is reached. While handling the timeouts, any pending transfers are cleaned up and the message that they correspond to is marked as failed, which leaves the curr_xfer field pointing at stale memory. To avoid this, clear curr_xfer to NULL upon timeout and check for this condition when the IRQ thread is finally run. While at it, also make sure to clear interrupts on failure so that new interrupts can be run. A better, more involved, fix would move the interrupt clearing into a hard IRQ handler. Ideally we would also want to signal that the IRQ thread no longer needs to be run after the timeout is hit to avoid the extra check for a valid transfer.
CVE-2025-68744
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: bpf: Free special fields when update [lru_,]percpu_hash maps As [lru_,]percpu_hash maps support BPF_KPTR_{REF,PERCPU}, missing calls to 'bpf_obj_free_fields()' in 'pcpu_copy_value()' could cause the memory referenced by BPF_KPTR_{REF,PERCPU} fields to be held until the map gets freed. Fix this by calling 'bpf_obj_free_fields()' after 'copy_map_value[,_long]()' in 'pcpu_copy_value()'.
CVE-2025-68742
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix invalid prog->stats access when update_effective_progs fails Syzkaller triggers an invalid memory access issue following fault injection in update_effective_progs. The issue can be described as follows: __cgroup_bpf_detach update_effective_progs compute_effective_progs bpf_prog_array_alloc <-- fault inject purge_effective_progs /* change to dummy_bpf_prog */ array->items[index] = &dummy_bpf_prog.prog ---softirq start--- __do_softirq ... __cgroup_bpf_run_filter_skb __bpf_prog_run_save_cb bpf_prog_run stats = this_cpu_ptr(prog->stats) /* invalid memory access */ flags = u64_stats_update_begin_irqsave(&stats->syncp) ---softirq end--- static_branch_dec(&cgroup_bpf_enabled_key[atype]) The reason is that fault injection caused update_effective_progs to fail and then changed the original prog into dummy_bpf_prog.prog in purge_effective_progs. Then a softirq came, and accessing the members of dummy_bpf_prog.prog in the softirq triggers invalid mem access. To fix it, skip updating stats when stats is NULL.
CVE-2025-68741
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix improper freeing of purex item In qla2xxx_process_purls_iocb(), an item is allocated via qla27xx_copy_multiple_pkt(), which internally calls qla24xx_alloc_purex_item(). The qla24xx_alloc_purex_item() function may return a pre-allocated item from a per-adapter pool for small allocations, instead of dynamically allocating memory with kzalloc(). An error handling path in qla2xxx_process_purls_iocb() incorrectly uses kfree() to release the item. If the item was from the pre-allocated pool, calling kfree() on it is a bug that can lead to memory corruption. Fix this by using the correct deallocation function, qla24xx_free_purex_item(), which properly handles both dynamically allocated and pre-allocated items.
CVE-2025-68740
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: ima: Handle error code returned by ima_filter_rule_match() In ima_match_rules(), if ima_filter_rule_match() returns -ENOENT due to the rule being NULL, the function incorrectly skips the 'if (!rc)' check and sets 'result = true'. The LSM rule is considered a match, causing extra files to be measured by IMA. This issue can be reproduced in the following scenario: After unloading the SELinux policy module via 'semodule -d', if an IMA measurement is triggered before ima_lsm_rules is updated, in ima_match_rules(), the first call to ima_filter_rule_match() returns -ESTALE. This causes the code to enter the 'if (rc == -ESTALE && !rule_reinitialized)' block, perform ima_lsm_copy_rule() and retry. In ima_lsm_copy_rule(), since the SELinux module has been removed, the rule becomes NULL, and the second call to ima_filter_rule_match() returns -ENOENT. This bypasses the 'if (!rc)' check and results in a false match. Call trace: selinux_audit_rule_match+0x310/0x3b8 security_audit_rule_match+0x60/0xa0 ima_match_rules+0x2e4/0x4a0 ima_match_policy+0x9c/0x1e8 ima_get_action+0x48/0x60 process_measurement+0xf8/0xa98 ima_bprm_check+0x98/0xd8 security_bprm_check+0x5c/0x78 search_binary_handler+0x6c/0x318 exec_binprm+0x58/0x1b8 bprm_execve+0xb8/0x130 do_execveat_common.isra.0+0x1a8/0x258 __arm64_sys_execve+0x48/0x68 invoke_syscall+0x50/0x128 el0_svc_common.constprop.0+0xc8/0xf0 do_el0_svc+0x24/0x38 el0_svc+0x44/0x200 el0t_64_sync_handler+0x100/0x130 el0t_64_sync+0x3c8/0x3d0 Fix this by changing 'if (!rc)' to 'if (rc <= 0)' to ensure that error codes like -ENOENT do not bypass the check and accidentally result in a successful match.
CVE-2023-54029
N/A
24 Dec 2025
CVE-2023-54023
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix race between balance and cancel/pause Syzbot reported a panic that looks like this: assertion failed: fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED, in fs/btrfs/ioctl.c:465 ------------[ cut here ]------------ kernel BUG at fs/btrfs/messages.c:259! RIP: 0010:btrfs_assertfail+0x2c/0x30 fs/btrfs/messages.c:259 Call Trace: <TASK> btrfs_exclop_balance fs/btrfs/ioctl.c:465 [inline] btrfs_ioctl_balance fs/btrfs/ioctl.c:3564 [inline] btrfs_ioctl+0x531e/0x5b30 fs/btrfs/ioctl.c:4632 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl fs/ioctl.c:856 [inline] __x64_sys_ioctl+0x197/0x210 fs/ioctl.c:856 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd The reproducer is running a balance and a cancel or pause in parallel. The way balance finishes is a bit wonky, if we were paused we need to save the balance_ctl in the fs_info, but clear it otherwise and cleanup. However we rely on the return values being specific errors, or having a cancel request or no pause request. If balance completes and returns 0, but we have a pause or cancel request we won't do the appropriate cleanup, and then the next time we try to start a balance we'll trip this ASSERT. The error handling is just wrong here, we always want to clean up, unless we got -ECANCELLED and we set the appropriate pause flag in the exclusive op. With this patch the reproducer ran for an hour without tripping, previously it would trip in less than a few minutes.
CVE-2023-54021
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: ext4: set goal start correctly in ext4_mb_normalize_request We need to set ac_g_ex to notify the goal start used in ext4_mb_find_by_goal. Set ac_g_ex instead of ac_f_ex in ext4_mb_normalize_request. Besides we should assure goal start is in range [first_data_block, blocks_count) as ext4_mb_initialize_context does. [ Added a check to make sure size is less than ar->pright; otherwise we could end up passing an underflowed value of ar->pright - size to ext4_get_group_no_and_offset(), which will trigger a BUG_ON later on. - TYT ]
CVE-2023-54017
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: powerpc/pseries: fix possible memory leak in ibmebus_bus_init() If device_register() returns error in ibmebus_bus_init(), name of kobject which is allocated in dev_set_name() called in device_add() is leaked. As comment of device_add() says, it should call put_device() to drop the reference count that was set in device_initialize() when it fails, so the name can be freed in kobject_cleanup().
CVE-2023-54016
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: Fix memory leak in rx_desc and tx_desc Currently when ath12k_dp_cc_desc_init() is called we allocate memory to rx_descs and tx_descs. In ath12k_dp_cc_cleanup(), during descriptor cleanup rx_descs and tx_descs memory is not freed. This is cause of memory leak. These allocated memory should be freed in ath12k_dp_cc_cleanup. In ath12k_dp_cc_desc_init(), we can save base address of rx_descs and tx_descs. In ath12k_dp_cc_cleanup(), we can free rx_descs and tx_descs memory using their base address. Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.0.1-00029-QCAHKSWPL_SILICONZ-1
CVE-2023-54014
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Check valid rport returned by fc_bsg_to_rport() Klocwork reported warning of rport maybe NULL and will be dereferenced. rport returned by call to fc_bsg_to_rport() could be NULL and dereferenced. Check valid rport returned by fc_bsg_to_rport().
CVE-2023-54013
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: interconnect: Fix locking for runpm vs reclaim For cases where icc_bw_set() can be called in callbaths that could deadlock against shrinker/reclaim, such as runpm resume, we need to decouple the icc locking. Introduce a new icc_bw_lock for cases where we need to serialize bw aggregation and update to decouple that from paths that require memory allocation such as node/link creation/ destruction. Fixes this lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 6.2.0-rc8-debug+ #554 Not tainted ------------------------------------------------------ ring0/132 is trying to acquire lock: ffffff80871916d0 (&gmu->lock){+.+.}-{3:3}, at: a6xx_pm_resume+0xf0/0x234 but task is already holding lock: ffffffdb5aee57e8 (dma_fence_map){++++}-{0:0}, at: msm_job_run+0x68/0x150 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (dma_fence_map){++++}-{0:0}: __dma_fence_might_wait+0x74/0xc0 dma_resv_lockdep+0x1f4/0x2f4 do_one_initcall+0x104/0x2bc kernel_init_freeable+0x344/0x34c kernel_init+0x30/0x134 ret_from_fork+0x10/0x20 -> #3 (mmu_notifier_invalidate_range_start){+.+.}-{0:0}: fs_reclaim_acquire+0x80/0xa8 slab_pre_alloc_hook.constprop.0+0x40/0x25c __kmem_cache_alloc_node+0x60/0x1cc __kmalloc+0xd8/0x100 topology_parse_cpu_capacity+0x8c/0x178 get_cpu_for_node+0x88/0xc4 parse_cluster+0x1b0/0x28c parse_cluster+0x8c/0x28c init_cpu_topology+0x168/0x188 smp_prepare_cpus+0x24/0xf8 kernel_init_freeable+0x18c/0x34c kernel_init+0x30/0x134 ret_from_fork+0x10/0x20 -> #2 (fs_reclaim){+.+.}-{0:0}: __fs_reclaim_acquire+0x3c/0x48 fs_reclaim_acquire+0x54/0xa8 slab_pre_alloc_hook.constprop.0+0x40/0x25c __kmem_cache_alloc_node+0x60/0x1cc __kmalloc+0xd8/0x100 kzalloc.constprop.0+0x14/0x20 icc_node_create_nolock+0x4c/0xc4 icc_node_create+0x38/0x58 qcom_icc_rpmh_probe+0x1b8/0x248 platform_probe+0x70/0xc4 really_probe+0x158/0x290 __driver_probe_device+0xc8/0xe0 driver_probe_device+0x44/0x100 __driver_attach+0xf8/0x108 bus_for_each_dev+0x78/0xc4 driver_attach+0x2c/0x38 bus_add_driver+0xd0/0x1d8 driver_register+0xbc/0xf8 __platform_driver_register+0x30/0x3c qnoc_driver_init+0x24/0x30 do_one_initcall+0x104/0x2bc kernel_init_freeable+0x344/0x34c kernel_init+0x30/0x134 ret_from_fork+0x10/0x20 -> #1 (icc_lock){+.+.}-{3:3}: __mutex_lock+0xcc/0x3c8 mutex_lock_nested+0x30/0x44 icc_set_bw+0x88/0x2b4 _set_opp_bw+0x8c/0xd8 _set_opp+0x19c/0x300 dev_pm_opp_set_opp+0x84/0x94 a6xx_gmu_resume+0x18c/0x804 a6xx_pm_resume+0xf8/0x234 adreno_runtime_resume+0x2c/0x38 pm_generic_runtime_resume+0x30/0x44 __rpm_callback+0x15c/0x174 rpm_callback+0x78/0x7c rpm_resume+0x318/0x524 __pm_runtime_resume+0x78/0xbc adreno_load_gpu+0xc4/0x17c msm_open+0x50/0x120 drm_file_alloc+0x17c/0x228 drm_open_helper+0x74/0x118 drm_open+0xa0/0x144 drm_stub_open+0xd4/0xe4 chrdev_open+0x1b8/0x1e4 do_dentry_open+0x2f8/0x38c vfs_open+0x34/0x40 path_openat+0x64c/0x7b4 do_filp_open+0x54/0xc4 do_sys_openat2+0x9c/0x100 do_sys_open+0x50/0x7c __arm64_sys_openat+0x28/0x34 invoke_syscall+0x8c/0x128 el0_svc_common.constprop.0+0xa0/0x11c do_el0_ ---truncated---
CVE-2023-54010
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: ACPICA: ACPICA: check null return of ACPI_ALLOCATE_ZEROED in acpi_db_display_objects ACPICA commit 0d5f467d6a0ba852ea3aad68663cbcbd43300fd4 ACPI_ALLOCATE_ZEROED may fails, object_info might be null and will cause null pointer dereference later.
CVE-2023-54002
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix assertion of exclop condition when starting balance Balance as exclusive state is compatible with paused balance and device add, which makes some things more complicated. The assertion of valid states when starting from paused balance needs to take into account two more states, the combinations can be hit when there are several threads racing to start balance and device add. This won't typically happen when the commands are started from command line. Scenario 1: With exclusive_operation state == BTRFS_EXCLOP_NONE. Concurrently adding multiple devices to the same mount point and btrfs_exclop_finish executed finishes before assertion in btrfs_exclop_balance, exclusive_operation will changed to BTRFS_EXCLOP_NONE state which lead to assertion failed: fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD, in fs/btrfs/ioctl.c:456 Call Trace: <TASK> btrfs_exclop_balance+0x13c/0x310 ? memdup_user+0xab/0xc0 ? PTR_ERR+0x17/0x20 btrfs_ioctl_add_dev+0x2ee/0x320 btrfs_ioctl+0x9d5/0x10d0 ? btrfs_ioctl_encoded_write+0xb80/0xb80 __x64_sys_ioctl+0x197/0x210 do_syscall_64+0x3c/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd Scenario 2: With exclusive_operation state == BTRFS_EXCLOP_BALANCE_PAUSED. Concurrently adding multiple devices to the same mount point and btrfs_exclop_balance executed finish before the latter thread execute assertion in btrfs_exclop_balance, exclusive_operation will changed to BTRFS_EXCLOP_BALANCE_PAUSED state which lead to assertion failed: fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD || fs_info->exclusive_operation == BTRFS_EXCLOP_NONE, fs/btrfs/ioctl.c:458 Call Trace: <TASK> btrfs_exclop_balance+0x240/0x410 ? memdup_user+0xab/0xc0 ? PTR_ERR+0x17/0x20 btrfs_ioctl_add_dev+0x2ee/0x320 btrfs_ioctl+0x9d5/0x10d0 ? btrfs_ioctl_encoded_write+0xb80/0xb80 __x64_sys_ioctl+0x197/0x210 do_syscall_64+0x3c/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd An example of the failed assertion is below, which shows that the paused balance is also needed to be checked. root@syzkaller:/home/xsk# ./repro Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 [ 416.611428][ T7970] BTRFS info (device loop0): fs_info exclusive_operation: 0 Failed to add device /dev/vda, errno 14 [ 416.613973][ T7971] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.615456][ T7972] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.617528][ T7973] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.618359][ T7974] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.622589][ T7975] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.624034][ T7976] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.626420][ T7977] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.627643][ T7978] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.629006][ T7979] BTRFS info (device loop0): fs_info exclusive_operation: 3 [ 416.630298][ T7980] BTRFS info (device loop0): fs_info exclusive_operation: 3 Fai ---truncated---
CVE-2023-53992
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: ocb: don't leave if not joined If there's no OCB state, don't ask the driver/mac80211 to leave, since that's just confusing. Since set/clear the chandef state, that's a simple check.