CVE Monitor
CVE-2023-54021
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: ext4: set goal start correctly in ext4_mb_normalize_request We need to set ac_g_ex to notify the goal start used in ext4_mb_find_by_goal. Set ac_g_ex instead of ac_f_ex in ext4_mb_normalize_request. Besides we should assure goal start is in range [first_data_block, blocks_count) as ext4_mb_initialize_context does. [ Added a check to make sure size is less than ar->pright; otherwise we could end up passing an underflowed value of ar->pright - size to ext4_get_group_no_and_offset(), which will trigger a BUG_ON later on. - TYT ]
CVE-2023-54017
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: powerpc/pseries: fix possible memory leak in ibmebus_bus_init() If device_register() returns error in ibmebus_bus_init(), name of kobject which is allocated in dev_set_name() called in device_add() is leaked. As comment of device_add() says, it should call put_device() to drop the reference count that was set in device_initialize() when it fails, so the name can be freed in kobject_cleanup().
CVE-2023-54016
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: Fix memory leak in rx_desc and tx_desc Currently when ath12k_dp_cc_desc_init() is called we allocate memory to rx_descs and tx_descs. In ath12k_dp_cc_cleanup(), during descriptor cleanup rx_descs and tx_descs memory is not freed. This is cause of memory leak. These allocated memory should be freed in ath12k_dp_cc_cleanup. In ath12k_dp_cc_desc_init(), we can save base address of rx_descs and tx_descs. In ath12k_dp_cc_cleanup(), we can free rx_descs and tx_descs memory using their base address. Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.0.1-00029-QCAHKSWPL_SILICONZ-1
CVE-2023-54014
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Check valid rport returned by fc_bsg_to_rport() Klocwork reported warning of rport maybe NULL and will be dereferenced. rport returned by call to fc_bsg_to_rport() could be NULL and dereferenced. Check valid rport returned by fc_bsg_to_rport().
CVE-2023-54013
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: interconnect: Fix locking for runpm vs reclaim For cases where icc_bw_set() can be called in callbaths that could deadlock against shrinker/reclaim, such as runpm resume, we need to decouple the icc locking. Introduce a new icc_bw_lock for cases where we need to serialize bw aggregation and update to decouple that from paths that require memory allocation such as node/link creation/ destruction. Fixes this lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 6.2.0-rc8-debug+ #554 Not tainted ------------------------------------------------------ ring0/132 is trying to acquire lock: ffffff80871916d0 (&gmu->lock){+.+.}-{3:3}, at: a6xx_pm_resume+0xf0/0x234 but task is already holding lock: ffffffdb5aee57e8 (dma_fence_map){++++}-{0:0}, at: msm_job_run+0x68/0x150 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (dma_fence_map){++++}-{0:0}: __dma_fence_might_wait+0x74/0xc0 dma_resv_lockdep+0x1f4/0x2f4 do_one_initcall+0x104/0x2bc kernel_init_freeable+0x344/0x34c kernel_init+0x30/0x134 ret_from_fork+0x10/0x20 -> #3 (mmu_notifier_invalidate_range_start){+.+.}-{0:0}: fs_reclaim_acquire+0x80/0xa8 slab_pre_alloc_hook.constprop.0+0x40/0x25c __kmem_cache_alloc_node+0x60/0x1cc __kmalloc+0xd8/0x100 topology_parse_cpu_capacity+0x8c/0x178 get_cpu_for_node+0x88/0xc4 parse_cluster+0x1b0/0x28c parse_cluster+0x8c/0x28c init_cpu_topology+0x168/0x188 smp_prepare_cpus+0x24/0xf8 kernel_init_freeable+0x18c/0x34c kernel_init+0x30/0x134 ret_from_fork+0x10/0x20 -> #2 (fs_reclaim){+.+.}-{0:0}: __fs_reclaim_acquire+0x3c/0x48 fs_reclaim_acquire+0x54/0xa8 slab_pre_alloc_hook.constprop.0+0x40/0x25c __kmem_cache_alloc_node+0x60/0x1cc __kmalloc+0xd8/0x100 kzalloc.constprop.0+0x14/0x20 icc_node_create_nolock+0x4c/0xc4 icc_node_create+0x38/0x58 qcom_icc_rpmh_probe+0x1b8/0x248 platform_probe+0x70/0xc4 really_probe+0x158/0x290 __driver_probe_device+0xc8/0xe0 driver_probe_device+0x44/0x100 __driver_attach+0xf8/0x108 bus_for_each_dev+0x78/0xc4 driver_attach+0x2c/0x38 bus_add_driver+0xd0/0x1d8 driver_register+0xbc/0xf8 __platform_driver_register+0x30/0x3c qnoc_driver_init+0x24/0x30 do_one_initcall+0x104/0x2bc kernel_init_freeable+0x344/0x34c kernel_init+0x30/0x134 ret_from_fork+0x10/0x20 -> #1 (icc_lock){+.+.}-{3:3}: __mutex_lock+0xcc/0x3c8 mutex_lock_nested+0x30/0x44 icc_set_bw+0x88/0x2b4 _set_opp_bw+0x8c/0xd8 _set_opp+0x19c/0x300 dev_pm_opp_set_opp+0x84/0x94 a6xx_gmu_resume+0x18c/0x804 a6xx_pm_resume+0xf8/0x234 adreno_runtime_resume+0x2c/0x38 pm_generic_runtime_resume+0x30/0x44 __rpm_callback+0x15c/0x174 rpm_callback+0x78/0x7c rpm_resume+0x318/0x524 __pm_runtime_resume+0x78/0xbc adreno_load_gpu+0xc4/0x17c msm_open+0x50/0x120 drm_file_alloc+0x17c/0x228 drm_open_helper+0x74/0x118 drm_open+0xa0/0x144 drm_stub_open+0xd4/0xe4 chrdev_open+0x1b8/0x1e4 do_dentry_open+0x2f8/0x38c vfs_open+0x34/0x40 path_openat+0x64c/0x7b4 do_filp_open+0x54/0xc4 do_sys_openat2+0x9c/0x100 do_sys_open+0x50/0x7c __arm64_sys_openat+0x28/0x34 invoke_syscall+0x8c/0x128 el0_svc_common.constprop.0+0xa0/0x11c do_el0_ ---truncated---
CVE-2023-54010
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: ACPICA: ACPICA: check null return of ACPI_ALLOCATE_ZEROED in acpi_db_display_objects ACPICA commit 0d5f467d6a0ba852ea3aad68663cbcbd43300fd4 ACPI_ALLOCATE_ZEROED may fails, object_info might be null and will cause null pointer dereference later.
CVE-2023-54002
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix assertion of exclop condition when starting balance Balance as exclusive state is compatible with paused balance and device add, which makes some things more complicated. The assertion of valid states when starting from paused balance needs to take into account two more states, the combinations can be hit when there are several threads racing to start balance and device add. This won't typically happen when the commands are started from command line. Scenario 1: With exclusive_operation state == BTRFS_EXCLOP_NONE. Concurrently adding multiple devices to the same mount point and btrfs_exclop_finish executed finishes before assertion in btrfs_exclop_balance, exclusive_operation will changed to BTRFS_EXCLOP_NONE state which lead to assertion failed: fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD, in fs/btrfs/ioctl.c:456 Call Trace: <TASK> btrfs_exclop_balance+0x13c/0x310 ? memdup_user+0xab/0xc0 ? PTR_ERR+0x17/0x20 btrfs_ioctl_add_dev+0x2ee/0x320 btrfs_ioctl+0x9d5/0x10d0 ? btrfs_ioctl_encoded_write+0xb80/0xb80 __x64_sys_ioctl+0x197/0x210 do_syscall_64+0x3c/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd Scenario 2: With exclusive_operation state == BTRFS_EXCLOP_BALANCE_PAUSED. Concurrently adding multiple devices to the same mount point and btrfs_exclop_balance executed finish before the latter thread execute assertion in btrfs_exclop_balance, exclusive_operation will changed to BTRFS_EXCLOP_BALANCE_PAUSED state which lead to assertion failed: fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD || fs_info->exclusive_operation == BTRFS_EXCLOP_NONE, fs/btrfs/ioctl.c:458 Call Trace: <TASK> btrfs_exclop_balance+0x240/0x410 ? memdup_user+0xab/0xc0 ? PTR_ERR+0x17/0x20 btrfs_ioctl_add_dev+0x2ee/0x320 btrfs_ioctl+0x9d5/0x10d0 ? btrfs_ioctl_encoded_write+0xb80/0xb80 __x64_sys_ioctl+0x197/0x210 do_syscall_64+0x3c/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd An example of the failed assertion is below, which shows that the paused balance is also needed to be checked. root@syzkaller:/home/xsk# ./repro Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 [ 416.611428][ T7970] BTRFS info (device loop0): fs_info exclusive_operation: 0 Failed to add device /dev/vda, errno 14 [ 416.613973][ T7971] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.615456][ T7972] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.617528][ T7973] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.618359][ T7974] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.622589][ T7975] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.624034][ T7976] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.626420][ T7977] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.627643][ T7978] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.629006][ T7979] BTRFS info (device loop0): fs_info exclusive_operation: 3 [ 416.630298][ T7980] BTRFS info (device loop0): fs_info exclusive_operation: 3 Fai ---truncated---
CVE-2023-53992
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: ocb: don't leave if not joined If there's no OCB state, don't ask the driver/mac80211 to leave, since that's just confusing. Since set/clear the chandef state, that's a simple check.
CVE-2023-53989
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: arm64: mm: fix VA-range sanity check Both create_mapping_noalloc() and update_mapping_prot() sanity-check their 'virt' parameter, but the check itself doesn't make much sense. The condition used today appears to be a historical accident. The sanity-check condition: if ((virt >= PAGE_END) && (virt < VMALLOC_START)) { [ ... warning here ... ] return; } ... can only be true for the KASAN shadow region or the module region, and there's no reason to exclude these specifically for creating and updateing mappings. When arm64 support was first upstreamed in commit: c1cc1552616d0f35 ("arm64: MMU initialisation") ... the condition was: if (virt < VMALLOC_START) { [ ... warning here ... ] return; } At the time, VMALLOC_START was the lowest kernel address, and this was checking whether 'virt' would be translated via TTBR1. Subsequently in commit: 14c127c957c1c607 ("arm64: mm: Flip kernel VA space") ... the condition was changed to: if ((virt >= VA_START) && (virt < VMALLOC_START)) { [ ... warning here ... ] return; } This appear to have been a thinko. The commit moved the linear map to the bottom of the kernel address space, with VMALLOC_START being at the halfway point. The old condition would warn for changes to the linear map below this, and at the time VA_START was the end of the linear map. Subsequently we cleaned up the naming of VA_START in commit: 77ad4ce69321abbe ("arm64: memory: rename VA_START to PAGE_END") ... keeping the erroneous condition as: if ((virt >= PAGE_END) && (virt < VMALLOC_START)) { [ ... warning here ... ] return; } Correct the condition to check against the start of the TTBR1 address space, which is currently PAGE_OFFSET. This simplifies the logic, and more clearly matches the "outside kernel range" message in the warning.
CVE-2023-53867
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: ceph: fix potential use-after-free bug when trimming caps When trimming the caps and just after the 'session->s_cap_lock' is released in ceph_iterate_session_caps() the cap maybe removed by another thread, and when using the stale cap memory in the callbacks it will trigger use-after-free crash. We need to check the existence of the cap just after the 'ci->i_ceph_lock' being acquired. And do nothing if it's already removed.
CVE-2022-50710
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: ice: set tx_tstamps when creating new Tx rings via ethtool When the user changes the number of queues via ethtool, the driver allocates new rings. This allocation did not initialize tx_tstamps. This results in the tx_tstamps field being zero (due to kcalloc allocation), and would result in a NULL pointer dereference when attempting a transmit timestamp on the new ring.
CVE-2022-50709
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: avoid uninit memory read in ath9k_htc_rx_msg() syzbot is reporting uninit value at ath9k_htc_rx_msg() [1], for ioctl(USB_RAW_IOCTL_EP_WRITE) can call ath9k_hif_usb_rx_stream() with pkt_len = 0 but ath9k_hif_usb_rx_stream() uses __dev_alloc_skb(pkt_len + 32, GFP_ATOMIC) based on an assumption that pkt_len is valid. As a result, ath9k_hif_usb_rx_stream() allocates skb with uninitialized memory and ath9k_htc_rx_msg() is reading from uninitialized memory. Since bytes accessed by ath9k_htc_rx_msg() is not known until ath9k_htc_rx_msg() is called, it would be difficult to check minimal valid pkt_len at "if (pkt_len > 2 * MAX_RX_BUF_SIZE) {" line in ath9k_hif_usb_rx_stream(). We have two choices. One is to workaround by adding __GFP_ZERO so that ath9k_htc_rx_msg() sees 0 if pkt_len is invalid. The other is to let ath9k_htc_rx_msg() validate pkt_len before accessing. This patch chose the latter. Note that I'm not sure threshold condition is correct, for I can't find details on possible packet length used by this protocol.
CVE-2022-50708
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: HSI: ssi_protocol: fix potential resource leak in ssip_pn_open() ssip_pn_open() claims the HSI client's port with hsi_claim_port(). When hsi_register_port_event() gets some error and returns a negetive value, the HSI client's port should be released with hsi_release_port(). Fix it by calling hsi_release_port() when hsi_register_port_event() fails.
CVE-2022-50700
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: wifi: ath10k: Delay the unmapping of the buffer On WCN3990, we are seeing a rare scenario where copy engine hardware is sending a copy complete interrupt to the host driver while still processing the buffer that the driver has sent, this is leading into an SMMU fault triggering kernel panic. This is happening on copy engine channel 3 (CE3) where the driver normally enqueues WMI commands to the firmware. Upon receiving a copy complete interrupt, host driver will immediately unmap and frees the buffer presuming that hardware has processed the buffer. In the issue case, upon receiving copy complete interrupt, host driver will unmap and free the buffer but since hardware is still accessing the buffer (which in this case got unmapped in parallel), SMMU hardware will trigger an SMMU fault resulting in a kernel panic. In order to avoid this, as a work around, add a delay before unmapping the copy engine source DMA buffer. This is conditionally done for WCN3990 and only for the CE3 channel where issue is seen. Below is the crash signature: wifi smmu error: kernel: [ 10.120965] arm-smmu 15000000.iommu: Unhandled context fault: fsr=0x402, iova=0x7fdfd8ac0, fsynr=0x500003,cbfrsynra=0xc1, cb=6 arm-smmu 15000000.iommu: Unhandled context fault:fsr=0x402, iova=0x7fe06fdc0, fsynr=0x710003, cbfrsynra=0xc1, cb=6 qcom-q6v5-mss 4080000.remoteproc: fatal error received: err_qdi.c:1040:EF:wlan_process:0x1:WLAN RT:0x2091: cmnos_thread.c:3998:Asserted in copy_engine.c:AXI_ERROR_DETECTED:2149 remoteproc remoteproc0: crash detected in 4080000.remoteproc: type fatal error <3> remoteproc remoteproc0: handling crash #1 in 4080000.remoteproc pc : __arm_lpae_unmap+0x500/0x514 lr : __arm_lpae_unmap+0x4bc/0x514 sp : ffffffc011ffb530 x29: ffffffc011ffb590 x28: 0000000000000000 x27: 0000000000000000 x26: 0000000000000004 x25: 0000000000000003 x24: ffffffc011ffb890 x23: ffffffa762ef9be0 x22: ffffffa77244ef00 x21: 0000000000000009 x20: 00000007fff7c000 x19: 0000000000000003 x18: 0000000000000000 x17: 0000000000000004 x16: ffffffd7a357d9f0 x15: 0000000000000000 x14: 00fd5d4fa7ffffff x13: 000000000000000e x12: 0000000000000000 x11: 00000000ffffffff x10: 00000000fffffe00 x9 : 000000000000017c x8 : 000000000000000c x7 : 0000000000000000 x6 : ffffffa762ef9000 x5 : 0000000000000003 x4 : 0000000000000004 x3 : 0000000000001000 x2 : 00000007fff7c000 x1 : ffffffc011ffb890 x0 : 0000000000000000 Call trace: __arm_lpae_unmap+0x500/0x514 __arm_lpae_unmap+0x4bc/0x514 __arm_lpae_unmap+0x4bc/0x514 arm_lpae_unmap_pages+0x78/0xa4 arm_smmu_unmap_pages+0x78/0x104 __iommu_unmap+0xc8/0x1e4 iommu_unmap_fast+0x38/0x48 __iommu_dma_unmap+0x84/0x104 iommu_dma_free+0x34/0x50 dma_free_attrs+0xa4/0xd0 ath10k_htt_rx_free+0xc4/0xf4 [ath10k_core] ath10k_core_stop+0x64/0x7c [ath10k_core] ath10k_halt+0x11c/0x180 [ath10k_core] ath10k_stop+0x54/0x94 [ath10k_core] drv_stop+0x48/0x1c8 [mac80211] ieee80211_do_open+0x638/0x77c [mac80211] ieee80211_open+0x48/0x5c [mac80211] __dev_open+0xb4/0x174 __dev_change_flags+0xc4/0x1dc dev_change_flags+0x3c/0x7c devinet_ioctl+0x2b4/0x580 inet_ioctl+0xb0/0x1b4 sock_do_ioctl+0x4c/0x16c compat_ifreq_ioctl+0x1cc/0x35c compat_sock_ioctl+0x110/0x2ac __arm64_compat_sys_ioctl+0xf4/0x3e0 el0_svc_common+0xb4/0x17c el0_svc_compat_handler+0x2c/0x58 el0_svc_compat+0x8/0x2c Tested-on: WCN3990 hw1.0 SNOC WLAN.HL.2.0-01387-QCAHLSWMTPLZ-1
CVE-2022-50697
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: mrp: introduce active flags to prevent UAF when applicant uninit The caller of del_timer_sync must prevent restarting of the timer, If we have no this synchronization, there is a small probability that the cancellation will not be successful. And syzbot report the fellowing crash: ================================================================== BUG: KASAN: use-after-free in hlist_add_head include/linux/list.h:929 [inline] BUG: KASAN: use-after-free in enqueue_timer+0x18/0xa4 kernel/time/timer.c:605 Write at addr f9ff000024df6058 by task syz-fuzzer/2256 Pointer tag: [f9], memory tag: [fe] CPU: 1 PID: 2256 Comm: syz-fuzzer Not tainted 6.1.0-rc5-syzkaller-00008- ge01d50cbd6ee #0 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace.part.0+0xe0/0xf0 arch/arm64/kernel/stacktrace.c:156 dump_backtrace arch/arm64/kernel/stacktrace.c:162 [inline] show_stack+0x18/0x40 arch/arm64/kernel/stacktrace.c:163 __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x68/0x84 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:284 [inline] print_report+0x1a8/0x4a0 mm/kasan/report.c:395 kasan_report+0x94/0xb4 mm/kasan/report.c:495 __do_kernel_fault+0x164/0x1e0 arch/arm64/mm/fault.c:320 do_bad_area arch/arm64/mm/fault.c:473 [inline] do_tag_check_fault+0x78/0x8c arch/arm64/mm/fault.c:749 do_mem_abort+0x44/0x94 arch/arm64/mm/fault.c:825 el1_abort+0x40/0x60 arch/arm64/kernel/entry-common.c:367 el1h_64_sync_handler+0xd8/0xe4 arch/arm64/kernel/entry-common.c:427 el1h_64_sync+0x64/0x68 arch/arm64/kernel/entry.S:576 hlist_add_head include/linux/list.h:929 [inline] enqueue_timer+0x18/0xa4 kernel/time/timer.c:605 mod_timer+0x14/0x20 kernel/time/timer.c:1161 mrp_periodic_timer_arm net/802/mrp.c:614 [inline] mrp_periodic_timer+0xa0/0xc0 net/802/mrp.c:627 call_timer_fn.constprop.0+0x24/0x80 kernel/time/timer.c:1474 expire_timers+0x98/0xc4 kernel/time/timer.c:1519 To fix it, we can introduce a new active flags to make sure the timer will not restart.
CVE-2025-68733
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: smack: fix bug: unprivileged task can create labels If an unprivileged task is allowed to relabel itself (/smack/relabel-self is not empty), it can freely create new labels by writing their names into own /proc/PID/attr/smack/current This occurs because do_setattr() imports the provided label in advance, before checking "relabel-self" list. This change ensures that the "relabel-self" list is checked before importing the label.
CVE-2025-68732
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: gpu: host1x: Fix race in syncpt alloc/free Fix race condition between host1x_syncpt_alloc() and host1x_syncpt_put() by using kref_put_mutex() instead of kref_put() + manual mutex locking. This ensures no thread can acquire the syncpt_mutex after the refcount drops to zero but before syncpt_release acquires it. This prevents races where syncpoints could be allocated while still being cleaned up from a previous release. Remove explicit mutex locking in syncpt_release as kref_put_mutex() handles this atomically.
CVE-2025-68728
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: ntfs3: fix uninit memory after failed mi_read in mi_format_new Fix a KMSAN un-init bug found by syzkaller. ntfs_get_bh() expects a buffer from sb_getblk(), that buffer may not be uptodate. We do not bring the buffer uptodate before setting it as uptodate. If the buffer were to not be uptodate, it could mean adding a buffer with un-init data to the mi record. Attempting to load that record will trigger KMSAN. Avoid this by setting the buffer as uptodate, if it’s not already, by overwriting it.
CVE-2025-68727
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: ntfs3: Fix uninit buffer allocated by __getname() Fix uninit errors caused after buffer allocation given to 'de'; by initializing the buffer with zeroes. The fix was found by using KMSAN.
CVE-2025-68724
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: crypto: asymmetric_keys - prevent overflow in asymmetric_key_generate_id Use check_add_overflow() to guard against potential integer overflows when adding the binary blob lengths and the size of an asymmetric_key_id structure and return ERR_PTR(-EOVERFLOW) accordingly. This prevents a possible buffer overflow when copying data from potentially malicious X.509 certificate fields that can be arbitrarily large, such as ASN.1 INTEGER serial numbers, issuer names, etc.
CVE-2025-68380
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix peer HE MCS assignment In ath11k_wmi_send_peer_assoc_cmd(), peer's transmit MCS is sent to firmware as receive MCS while peer's receive MCS sent as transmit MCS, which goes against firmwire's definition. While connecting to a misbehaved AP that advertises 0xffff (meaning not supported) for 160 MHz transmit MCS map, firmware crashes due to 0xffff is assigned to he_mcs->rx_mcs_set field. Ext Tag: HE Capabilities [...] Supported HE-MCS and NSS Set [...] Rx and Tx MCS Maps 160 MHz [...] Tx HE-MCS Map 160 MHz: 0xffff Swap the assignment to fix this issue. As the HE rate control mask is meant to limit our own transmit MCS, it needs to go via he_mcs->rx_mcs_set field. With the aforementioned swapping done, change is needed as well to apply it to the peer's receive MCS. Tested-on: WCN6855 hw2.1 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.41 Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.4.1-00199-QCAHKSWPL_SILICONZ-1
CVE-2025-68379
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix null deref on srq->rq.queue after resize failure A NULL pointer dereference can occur in rxe_srq_chk_attr() when ibv_modify_srq() is invoked twice in succession under certain error conditions. The first call may fail in rxe_queue_resize(), which leads rxe_srq_from_attr() to set srq->rq.queue = NULL. The second call then triggers a crash (null deref) when accessing srq->rq.queue->buf->index_mask. Call Trace: <TASK> rxe_modify_srq+0x170/0x480 [rdma_rxe] ? __pfx_rxe_modify_srq+0x10/0x10 [rdma_rxe] ? uverbs_try_lock_object+0x4f/0xa0 [ib_uverbs] ? rdma_lookup_get_uobject+0x1f0/0x380 [ib_uverbs] ib_uverbs_modify_srq+0x204/0x290 [ib_uverbs] ? __pfx_ib_uverbs_modify_srq+0x10/0x10 [ib_uverbs] ? tryinc_node_nr_active+0xe6/0x150 ? uverbs_fill_udata+0xed/0x4f0 [ib_uverbs] ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x2c0/0x470 [ib_uverbs] ? __pfx_ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x10/0x10 [ib_uverbs] ? uverbs_fill_udata+0xed/0x4f0 [ib_uverbs] ib_uverbs_run_method+0x55a/0x6e0 [ib_uverbs] ? __pfx_ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x10/0x10 [ib_uverbs] ib_uverbs_cmd_verbs+0x54d/0x800 [ib_uverbs] ? __pfx_ib_uverbs_cmd_verbs+0x10/0x10 [ib_uverbs] ? __pfx___raw_spin_lock_irqsave+0x10/0x10 ? __pfx_do_vfs_ioctl+0x10/0x10 ? ioctl_has_perm.constprop.0.isra.0+0x2c7/0x4c0 ? __pfx_ioctl_has_perm.constprop.0.isra.0+0x10/0x10 ib_uverbs_ioctl+0x13e/0x220 [ib_uverbs] ? __pfx_ib_uverbs_ioctl+0x10/0x10 [ib_uverbs] __x64_sys_ioctl+0x138/0x1c0 do_syscall_64+0x82/0x250 ? fdget_pos+0x58/0x4c0 ? ksys_write+0xf3/0x1c0 ? __pfx_ksys_write+0x10/0x10 ? do_syscall_64+0xc8/0x250 ? __pfx_vm_mmap_pgoff+0x10/0x10 ? fget+0x173/0x230 ? fput+0x2a/0x80 ? ksys_mmap_pgoff+0x224/0x4c0 ? do_syscall_64+0xc8/0x250 ? do_user_addr_fault+0x37b/0xfe0 ? clear_bhb_loop+0x50/0xa0 ? clear_bhb_loop+0x50/0xa0 ? clear_bhb_loop+0x50/0xa0 entry_SYSCALL_64_after_hwframe+0x76/0x7e
CVE-2025-68372
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: nbd: defer config put in recv_work There is one uaf issue in recv_work when running NBD_CLEAR_SOCK and NBD_CMD_RECONFIGURE: nbd_genl_connect // conf_ref=2 (connect and recv_work A) nbd_open // conf_ref=3 recv_work A done // conf_ref=2 NBD_CLEAR_SOCK // conf_ref=1 nbd_genl_reconfigure // conf_ref=2 (trigger recv_work B) close nbd // conf_ref=1 recv_work B config_put // conf_ref=0 atomic_dec(&config->recv_threads); -> UAF Or only running NBD_CLEAR_SOCK: nbd_genl_connect // conf_ref=2 nbd_open // conf_ref=3 NBD_CLEAR_SOCK // conf_ref=2 close nbd nbd_release config_put // conf_ref=1 recv_work config_put // conf_ref=0 atomic_dec(&config->recv_threads); -> UAF Commit 87aac3a80af5 ("nbd: call nbd_config_put() before notifying the waiter") moved nbd_config_put() to run before waking up the waiter in recv_work, in order to ensure that nbd_start_device_ioctl() would not be woken up while nbd->task_recv was still uncleared. However, in nbd_start_device_ioctl(), after being woken up it explicitly calls flush_workqueue() to make sure all current works are finished. Therefore, there is no need to move the config put ahead of the wakeup. Move nbd_config_put() to the end of recv_work, so that the reference is held for the whole lifetime of the worker thread. This makes sure the config cannot be freed while recv_work is still running, even if clear + reconfigure interleave. In addition, we don't need to worry about recv_work dropping the last nbd_put (which causes deadlock): path A (netlink with NBD_CFLAG_DESTROY_ON_DISCONNECT): connect // nbd_refs=1 (trigger recv_work) open nbd // nbd_refs=2 NBD_CLEAR_SOCK close nbd nbd_release nbd_disconnect_and_put flush_workqueue // recv_work done nbd_config_put nbd_put // nbd_refs=1 nbd_put // nbd_refs=0 queue_work path B (netlink without NBD_CFLAG_DESTROY_ON_DISCONNECT): connect // nbd_refs=2 (trigger recv_work) open nbd // nbd_refs=3 NBD_CLEAR_SOCK // conf_refs=2 close nbd nbd_release nbd_config_put // conf_refs=1 nbd_put // nbd_refs=2 recv_work done // conf_refs=0, nbd_refs=1 rmmod // nbd_refs=0 Depends-on: e2daec488c57 ("nbd: Fix hungtask when nbd_config_put")
CVE-2025-68371
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: scsi: smartpqi: Fix device resources accessed after device removal Correct possible race conditions during device removal. Previously, a scheduled work item to reset a LUN could still execute after the device was removed, leading to use-after-free and other resource access issues. This race condition occurs because the abort handler may schedule a LUN reset concurrently with device removal via sdev_destroy(), leading to use-after-free and improper access to freed resources. - Check in the device reset handler if the device is still present in the controller's SCSI device list before running; if not, the reset is skipped. - Cancel any pending TMF work that has not started in sdev_destroy(). - Ensure device freeing in sdev_destroy() is done while holding the LUN reset mutex to avoid races with ongoing resets.
CVE-2025-68369
N/A
24 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: ntfs3: init run lock for extend inode After setting the inode mode of $Extend to a regular file, executing the truncate system call will enter the do_truncate() routine, causing the run_lock uninitialized error reported by syzbot. Prior to patch 4e8011ffec79, if the inode mode of $Extend was not set to a regular file, the do_truncate() routine would not be entered. Add the run_lock initialization when loading $Extend. syzbot reported: INFO: trying to register non-static key. Call Trace: dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 assign_lock_key+0x133/0x150 kernel/locking/lockdep.c:984 register_lock_class+0x105/0x320 kernel/locking/lockdep.c:1299 __lock_acquire+0x99/0xd20 kernel/locking/lockdep.c:5112 lock_acquire+0x120/0x360 kernel/locking/lockdep.c:5868 down_write+0x96/0x1f0 kernel/locking/rwsem.c:1590 ntfs_set_size+0x140/0x200 fs/ntfs3/inode.c:860 ntfs_extend+0x1d9/0x970 fs/ntfs3/file.c:387 ntfs_setattr+0x2e8/0xbe0 fs/ntfs3/file.c:808