CVE Monitor
CVE-2025-43501
N/A
17 Dec 2025
A buffer overflow issue was addressed with improved memory handling. This issue is fixed in Safari 26.2, iOS 18.7.3 and iPadOS 18.7.3, iOS 26.2 and iPadOS 26.2, macOS Tahoe 26.2, visionOS 26.2. Processing maliciously crafted web content may lead to an unexpected process crash.
CVE-2025-20393
CRITICAL
17 Dec 2025
A vulnerability in the Spam Quarantine feature of Cisco AsyncOS Software for Cisco Secure Email Gateway and Cisco Secure Email and Web Manager could allow an unauthenticated, remote attacker to execute arbitrary system commands on an affected device with root privileges. This vulnerability is due to insufficient validation of HTTP requests by the Spam Quarantine feature. An attacker could exploit this vulnerability by sending a crafted HTTP request to the affected device. A successful exploit could allow the attacker to execute arbitrary commands on the underlying operating system with root privileges.
CVE-2025-65185
N/A
17 Dec 2025
There is a username enumeration via local user login in Entrinsik Informer v5.10.1 which allows malicious users to enumerate users by entering an OTP code and new password then reviewing application responses.
CVE-2025-14553
HIGH
16 Dec 2025
Exposure of password hashes through an unauthenticated API response in TP-Link Tapo app on iOS and Android for Tapo cameras, allowing attackers to brute force the password in the local network. Issue can be mitigated through mobile application updates. Device firmware remains unchanged.
CVE-2023-53898
MEDIUM
16 Dec 2025
Rukovoditel 3.4.1 contains a stored cross-site scripting vulnerabilities that allow authenticated attackers to inject malicious scripts. Attackers can insert iframe and script payloads in application copyright text to execute arbitrary JavaScript in victim browsers.
CVE-2023-53897
MEDIUM
16 Dec 2025
Rukovoditel 3.4.1 contains multiple stored cross-site scripting vulnerabilities that allow authenticated attackers to inject malicious scripts. Attackers can insert XSS payloads in project task comments to execute arbitrary JavaScript in victim browsers.
CVE-2025-37164
CRITICAL
16 Dec 2025
A remote code execution issue exists in HPE OneView.
CVE-2025-68322
N/A
16 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: parisc: Avoid crash due to unaligned access in unwinder Guenter Roeck reported this kernel crash on his emulated B160L machine: Starting network: udhcpc: started, v1.36.1 Backtrace: [<104320d4>] unwind_once+0x1c/0x5c [<10434a00>] walk_stackframe.isra.0+0x74/0xb8 [<10434a6c>] arch_stack_walk+0x28/0x38 [<104e5efc>] stack_trace_save+0x48/0x5c [<105d1bdc>] set_track_prepare+0x44/0x6c [<105d9c80>] ___slab_alloc+0xfc4/0x1024 [<105d9d38>] __slab_alloc.isra.0+0x58/0x90 [<105dc80c>] kmem_cache_alloc_noprof+0x2ac/0x4a0 [<105b8e54>] __anon_vma_prepare+0x60/0x280 [<105a823c>] __vmf_anon_prepare+0x68/0x94 [<105a8b34>] do_wp_page+0x8cc/0xf10 [<105aad88>] handle_mm_fault+0x6c0/0xf08 [<10425568>] do_page_fault+0x110/0x440 [<10427938>] handle_interruption+0x184/0x748 [<11178398>] schedule+0x4c/0x190 BUG: spinlock recursion on CPU#0, ifconfig/2420 lock: terminate_lock.2+0x0/0x1c, .magic: dead4ead, .owner: ifconfig/2420, .owner_cpu: 0 While creating the stack trace, the unwinder uses the stack pointer to guess the previous frame to read the previous stack pointer from memory. The crash happens, because the unwinder tries to read from unaligned memory and as such triggers the unalignment trap handler which then leads to the spinlock recursion and finally to a deadlock. Fix it by checking the alignment before accessing the memory.
CVE-2025-68321
N/A
16 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: page_pool: always add GFP_NOWARN for ATOMIC allocations Driver authors often forget to add GFP_NOWARN for page allocation from the datapath. This is annoying to users as OOMs are a fact of life, and we pretty much expect network Rx to hit page allocation failures during OOM. Make page pool add GFP_NOWARN for ATOMIC allocations by default.
CVE-2025-68318
N/A
16 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: clk: thead: th1520-ap: set all AXI clocks to CLK_IS_CRITICAL The AXI crossbar of TH1520 has no proper timeout handling, which means gating AXI clocks can easily lead to bus timeout and thus system hang. Set all AXI clock gates to CLK_IS_CRITICAL. All these clock gates are ungated by default on system reset. In addition, convert all current CLK_IGNORE_UNUSED usage to CLK_IS_CRITICAL to prevent unwanted clock gating.
CVE-2025-68317
N/A
16 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: io_uring/zctx: check chained notif contexts Send zc only links ubuf_info for requests coming from the same context. There are some ambiguous syz reports, so let's check the assumption on notification completion.
CVE-2025-68313
N/A
16 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: x86/CPU/AMD: Add RDSEED fix for Zen5 There's an issue with RDSEED's 16-bit and 32-bit register output variants on Zen5 which return a random value of 0 "at a rate inconsistent with randomness while incorrectly signaling success (CF=1)". Search the web for AMD-SB-7055 for more detail. Add a fix glue which checks microcode revisions. [ bp: Add microcode revisions checking, rewrite. ]
CVE-2025-68311
N/A
16 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: tty: serial: ip22zilog: Use platform device for probing After commit 84a9582fd203 ("serial: core: Start managing serial controllers to enable runtime PM") serial drivers need to provide a device in struct uart_port.dev otherwise an oops happens. To fix this issue for ip22zilog driver switch driver to a platform driver and setup the serial device in sgi-ip22 code.
CVE-2025-68309
N/A
16 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: PCI/AER: Fix NULL pointer access by aer_info The kzalloc(GFP_KERNEL) may return NULL, so all accesses to aer_info->xxx will result in kernel panic. Fix it.
CVE-2025-68297
N/A
16 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: ceph: fix crash in process_v2_sparse_read() for encrypted directories The crash in process_v2_sparse_read() for fscrypt-encrypted directories has been reported. Issue takes place for Ceph msgr2 protocol in secure mode. It can be reproduced by the steps: sudo mount -t ceph :/ /mnt/cephfs/ -o name=admin,fs=cephfs,ms_mode=secure (1) mkdir /mnt/cephfs/fscrypt-test-3 (2) cp area_decrypted.tar /mnt/cephfs/fscrypt-test-3 (3) fscrypt encrypt --source=raw_key --key=./my.key /mnt/cephfs/fscrypt-test-3 (4) fscrypt lock /mnt/cephfs/fscrypt-test-3 (5) fscrypt unlock --key=my.key /mnt/cephfs/fscrypt-test-3 (6) cat /mnt/cephfs/fscrypt-test-3/area_decrypted.tar (7) Issue has been triggered [ 408.072247] ------------[ cut here ]------------ [ 408.072251] WARNING: CPU: 1 PID: 392 at net/ceph/messenger_v2.c:865 ceph_con_v2_try_read+0x4b39/0x72f0 [ 408.072267] Modules linked in: intel_rapl_msr intel_rapl_common intel_uncore_frequency_common intel_pmc_core pmt_telemetry pmt_discovery pmt_class intel_pmc_ssram_telemetry intel_vsec kvm_intel joydev kvm irqbypass polyval_clmulni ghash_clmulni_intel aesni_intel rapl input_leds psmouse serio_raw i2c_piix4 vga16fb bochs vgastate i2c_smbus floppy mac_hid qemu_fw_cfg pata_acpi sch_fq_codel rbd msr parport_pc ppdev lp parport efi_pstore [ 408.072304] CPU: 1 UID: 0 PID: 392 Comm: kworker/1:3 Not tainted 6.17.0-rc7+ [ 408.072307] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-5.fc42 04/01/2014 [ 408.072310] Workqueue: ceph-msgr ceph_con_workfn [ 408.072314] RIP: 0010:ceph_con_v2_try_read+0x4b39/0x72f0 [ 408.072317] Code: c7 c1 20 f0 d4 ae 50 31 d2 48 c7 c6 60 27 d5 ae 48 c7 c7 f8 8e 6f b0 68 60 38 d5 ae e8 00 47 61 fe 48 83 c4 18 e9 ac fc ff ff <0f> 0b e9 06 fe ff ff 4c 8b 9d 98 fd ff ff 0f 84 64 e7 ff ff 89 85 [ 408.072319] RSP: 0018:ffff88811c3e7a30 EFLAGS: 00010246 [ 408.072322] RAX: ffffed1024874c6f RBX: ffffea00042c2b40 RCX: 0000000000000f38 [ 408.072324] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 [ 408.072325] RBP: ffff88811c3e7ca8 R08: 0000000000000000 R09: 00000000000000c8 [ 408.072326] R10: 00000000000000c8 R11: 0000000000000000 R12: 00000000000000c8 [ 408.072327] R13: dffffc0000000000 R14: ffff8881243a6030 R15: 0000000000003000 [ 408.072329] FS: 0000000000000000(0000) GS:ffff88823eadf000(0000) knlGS:0000000000000000 [ 408.072331] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 408.072332] CR2: 000000c0003c6000 CR3: 000000010c106005 CR4: 0000000000772ef0 [ 408.072336] PKRU: 55555554 [ 408.072337] Call Trace: [ 408.072338] <TASK> [ 408.072340] ? sched_clock_noinstr+0x9/0x10 [ 408.072344] ? __pfx_ceph_con_v2_try_read+0x10/0x10 [ 408.072347] ? _raw_spin_unlock+0xe/0x40 [ 408.072349] ? finish_task_switch.isra.0+0x15d/0x830 [ 408.072353] ? __kasan_check_write+0x14/0x30 [ 408.072357] ? mutex_lock+0x84/0xe0 [ 408.072359] ? __pfx_mutex_lock+0x10/0x10 [ 408.072361] ceph_con_workfn+0x27e/0x10e0 [ 408.072364] ? metric_delayed_work+0x311/0x2c50 [ 408.072367] process_one_work+0x611/0xe20 [ 408.072371] ? __kasan_check_write+0x14/0x30 [ 408.072373] worker_thread+0x7e3/0x1580 [ 408.072375] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 408.072378] ? __pfx_worker_thread+0x10/0x10 [ 408.072381] kthread+0x381/0x7a0 [ 408.072383] ? __pfx__raw_spin_lock_irq+0x10/0x10 [ 408.072385] ? __pfx_kthread+0x10/0x10 [ 408.072387] ? __kasan_check_write+0x14/0x30 [ 408.072389] ? recalc_sigpending+0x160/0x220 [ 408.072392] ? _raw_spin_unlock_irq+0xe/0x50 [ 408.072394] ? calculate_sigpending+0x78/0xb0 [ 408.072395] ? __pfx_kthread+0x10/0x10 [ 408.072397] ret_from_fork+0x2b6/0x380 [ 408.072400] ? __pfx_kthread+0x10/0x10 [ 408.072402] ret_from_fork_asm+0x1a/0x30 [ 408.072406] </TASK> [ 408.072407] ---[ end trace 0000000000000000 ]--- [ 408.072418] Oops: general protection fault, probably for non-canonical address 0xdffffc00000000 ---truncated---
CVE-2025-68291
N/A
16 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: mptcp: Initialise rcv_mss before calling tcp_send_active_reset() in mptcp_do_fastclose(). syzbot reported divide-by-zero in __tcp_select_window() by MPTCP socket. [0] We had a similar issue for the bare TCP and fixed in commit 499350a5a6e7 ("tcp: initialize rcv_mss to TCP_MIN_MSS instead of 0"). Let's apply the same fix to mptcp_do_fastclose(). [0]: Oops: divide error: 0000 [#1] SMP KASAN PTI CPU: 0 UID: 0 PID: 6068 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 RIP: 0010:__tcp_select_window+0x824/0x1320 net/ipv4/tcp_output.c:3336 Code: ff ff ff 44 89 f1 d3 e0 89 c1 f7 d1 41 01 cc 41 21 c4 e9 a9 00 00 00 e8 ca 49 01 f8 e9 9c 00 00 00 e8 c0 49 01 f8 44 89 e0 99 <f7> 7c 24 1c 41 29 d4 48 bb 00 00 00 00 00 fc ff df e9 80 00 00 00 RSP: 0018:ffffc90003017640 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff88807b469e40 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffc90003017730 R08: ffff888033268143 R09: 1ffff1100664d028 R10: dffffc0000000000 R11: ffffed100664d029 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 FS: 000055557faa0500(0000) GS:ffff888126135000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f64a1912ff8 CR3: 0000000072122000 CR4: 00000000003526f0 Call Trace: <TASK> tcp_select_window net/ipv4/tcp_output.c:281 [inline] __tcp_transmit_skb+0xbc7/0x3aa0 net/ipv4/tcp_output.c:1568 tcp_transmit_skb net/ipv4/tcp_output.c:1649 [inline] tcp_send_active_reset+0x2d1/0x5b0 net/ipv4/tcp_output.c:3836 mptcp_do_fastclose+0x27e/0x380 net/mptcp/protocol.c:2793 mptcp_disconnect+0x238/0x710 net/mptcp/protocol.c:3253 mptcp_sendmsg_fastopen+0x2f8/0x580 net/mptcp/protocol.c:1776 mptcp_sendmsg+0x1774/0x1980 net/mptcp/protocol.c:1855 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg+0xe5/0x270 net/socket.c:742 __sys_sendto+0x3bd/0x520 net/socket.c:2244 __do_sys_sendto net/socket.c:2251 [inline] __se_sys_sendto net/socket.c:2247 [inline] __x64_sys_sendto+0xde/0x100 net/socket.c:2247 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f66e998f749 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffff9acedb8 EFLAGS: 00000246 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 00007f66e9be5fa0 RCX: 00007f66e998f749 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 RBP: 00007ffff9acee10 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001 R13: 00007f66e9be5fa0 R14: 00007f66e9be5fa0 R15: 0000000000000006 </TASK>
CVE-2025-68285
N/A
16 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: libceph: fix potential use-after-free in have_mon_and_osd_map() The wait loop in __ceph_open_session() can race with the client receiving a new monmap or osdmap shortly after the initial map is received. Both ceph_monc_handle_map() and handle_one_map() install a new map immediately after freeing the old one kfree(monc->monmap); monc->monmap = monmap; ceph_osdmap_destroy(osdc->osdmap); osdc->osdmap = newmap; under client->monc.mutex and client->osdc.lock respectively, but because neither is taken in have_mon_and_osd_map() it's possible for client->monc.monmap->epoch and client->osdc.osdmap->epoch arms in client->monc.monmap && client->monc.monmap->epoch && client->osdc.osdmap && client->osdc.osdmap->epoch; condition to dereference an already freed map. This happens to be reproducible with generic/395 and generic/397 with KASAN enabled: BUG: KASAN: slab-use-after-free in have_mon_and_osd_map+0x56/0x70 Read of size 4 at addr ffff88811012d810 by task mount.ceph/13305 CPU: 2 UID: 0 PID: 13305 Comm: mount.ceph Not tainted 6.14.0-rc2-build2+ #1266 ... Call Trace: <TASK> have_mon_and_osd_map+0x56/0x70 ceph_open_session+0x182/0x290 ceph_get_tree+0x333/0x680 vfs_get_tree+0x49/0x180 do_new_mount+0x1a3/0x2d0 path_mount+0x6dd/0x730 do_mount+0x99/0xe0 __do_sys_mount+0x141/0x180 do_syscall_64+0x9f/0x100 entry_SYSCALL_64_after_hwframe+0x76/0x7e </TASK> Allocated by task 13305: ceph_osdmap_alloc+0x16/0x130 ceph_osdc_init+0x27a/0x4c0 ceph_create_client+0x153/0x190 create_fs_client+0x50/0x2a0 ceph_get_tree+0xff/0x680 vfs_get_tree+0x49/0x180 do_new_mount+0x1a3/0x2d0 path_mount+0x6dd/0x730 do_mount+0x99/0xe0 __do_sys_mount+0x141/0x180 do_syscall_64+0x9f/0x100 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 9475: kfree+0x212/0x290 handle_one_map+0x23c/0x3b0 ceph_osdc_handle_map+0x3c9/0x590 mon_dispatch+0x655/0x6f0 ceph_con_process_message+0xc3/0xe0 ceph_con_v1_try_read+0x614/0x760 ceph_con_workfn+0x2de/0x650 process_one_work+0x486/0x7c0 process_scheduled_works+0x73/0x90 worker_thread+0x1c8/0x2a0 kthread+0x2ec/0x300 ret_from_fork+0x24/0x40 ret_from_fork_asm+0x1a/0x30 Rewrite the wait loop to check the above condition directly with client->monc.mutex and client->osdc.lock taken as appropriate. While at it, improve the timeout handling (previously mount_timeout could be exceeded in case wait_event_interruptible_timeout() slept more than once) and access client->auth_err under client->monc.mutex to match how it's set in finish_auth(). monmap_show() and osdmap_show() now take the respective lock before accessing the map as well.
CVE-2025-68284
N/A
16 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: libceph: prevent potential out-of-bounds writes in handle_auth_session_key() The len field originates from untrusted network packets. Boundary checks have been added to prevent potential out-of-bounds writes when decrypting the connection secret or processing service tickets. [ idryomov: changelog ]
CVE-2025-68283
N/A
16 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: libceph: replace BUG_ON with bounds check for map->max_osd OSD indexes come from untrusted network packets. Boundary checks are added to validate these against map->max_osd. [ idryomov: drop BUG_ON in ceph_get_primary_affinity(), minor cosmetic edits ]
CVE-2025-68281
N/A
16 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: ASoC: SDCA: bug fix while parsing mipi-sdca-control-cn-list "struct sdca_control" declares "values" field as integer array. But the memory allocated to it is of char array. This causes crash for sdca_parse_function API. This patch addresses the issue by allocating correct data size.
CVE-2025-68266
N/A
16 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: bfs: Reconstruct file type when loading from disk syzbot is reporting that S_IFMT bits of inode->i_mode can become bogus when the S_IFMT bits of the 32bits "mode" field loaded from disk are corrupted or when the 32bits "attributes" field loaded from disk are corrupted. A documentation says that BFS uses only lower 9 bits of the "mode" field. But I can't find an explicit explanation that the unused upper 23 bits (especially, the S_IFMT bits) are initialized with 0. Therefore, ignore the S_IFMT bits of the "mode" field loaded from disk. Also, verify that the value of the "attributes" field loaded from disk is either BFS_VREG or BFS_VDIR (because BFS supports only regular files and the root directory).
CVE-2025-68265
N/A
16 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: nvme: fix admin request_queue lifetime The namespaces can access the controller's admin request_queue, and stale references on the namespaces may exist after tearing down the controller. Ensure the admin request_queue is active by moving the controller's 'put' to after all controller references have been released to ensure no one is can access the request_queue. This fixes a reported use-after-free bug: BUG: KASAN: slab-use-after-free in blk_queue_enter+0x41c/0x4a0 Read of size 8 at addr ffff88c0a53819f8 by task nvme/3287 CPU: 67 UID: 0 PID: 3287 Comm: nvme Tainted: G E 6.13.2-ga1582f1a031e #15 Tainted: [E]=UNSIGNED_MODULE Hardware name: Jabil /EGS 2S MB1, BIOS 1.00 06/18/2025 Call Trace: <TASK> dump_stack_lvl+0x4f/0x60 print_report+0xc4/0x620 ? _raw_spin_lock_irqsave+0x70/0xb0 ? _raw_read_unlock_irqrestore+0x30/0x30 ? blk_queue_enter+0x41c/0x4a0 kasan_report+0xab/0xe0 ? blk_queue_enter+0x41c/0x4a0 blk_queue_enter+0x41c/0x4a0 ? __irq_work_queue_local+0x75/0x1d0 ? blk_queue_start_drain+0x70/0x70 ? irq_work_queue+0x18/0x20 ? vprintk_emit.part.0+0x1cc/0x350 ? wake_up_klogd_work_func+0x60/0x60 blk_mq_alloc_request+0x2b7/0x6b0 ? __blk_mq_alloc_requests+0x1060/0x1060 ? __switch_to+0x5b7/0x1060 nvme_submit_user_cmd+0xa9/0x330 nvme_user_cmd.isra.0+0x240/0x3f0 ? force_sigsegv+0xe0/0xe0 ? nvme_user_cmd64+0x400/0x400 ? vfs_fileattr_set+0x9b0/0x9b0 ? cgroup_update_frozen_flag+0x24/0x1c0 ? cgroup_leave_frozen+0x204/0x330 ? nvme_ioctl+0x7c/0x2c0 blkdev_ioctl+0x1a8/0x4d0 ? blkdev_common_ioctl+0x1930/0x1930 ? fdget+0x54/0x380 __x64_sys_ioctl+0x129/0x190 do_syscall_64+0x5b/0x160 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7f765f703b0b Code: ff ff ff 85 c0 79 9b 49 c7 c4 ff ff ff ff 5b 5d 4c 89 e0 41 5c c3 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa b8 10 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d dd 52 0f 00 f7 d8 64 89 01 48 RSP: 002b:00007ffe2cefe808 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007ffe2cefe860 RCX: 00007f765f703b0b RDX: 00007ffe2cefe860 RSI: 00000000c0484e41 RDI: 0000000000000003 RBP: 0000000000000000 R08: 0000000000000003 R09: 0000000000000000 R10: 00007f765f611d50 R11: 0000000000000202 R12: 0000000000000003 R13: 00000000c0484e41 R14: 0000000000000001 R15: 00007ffe2cefea60 </TASK>
CVE-2025-68264
N/A
16 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: ext4: refresh inline data size before write operations The cached ei->i_inline_size can become stale between the initial size check and when ext4_update_inline_data()/ext4_create_inline_data() use it. Although ext4_get_max_inline_size() reads the correct value at the time of the check, concurrent xattr operations can modify i_inline_size before ext4_write_lock_xattr() is acquired. This causes ext4_update_inline_data() and ext4_create_inline_data() to work with stale capacity values, leading to a BUG_ON() crash in ext4_write_inline_data(): kernel BUG at fs/ext4/inline.c:1331! BUG_ON(pos + len > EXT4_I(inode)->i_inline_size); The race window: 1. ext4_get_max_inline_size() reads i_inline_size = 60 (correct) 2. Size check passes for 50-byte write 3. [Another thread adds xattr, i_inline_size changes to 40] 4. ext4_write_lock_xattr() acquires lock 5. ext4_update_inline_data() uses stale i_inline_size = 60 6. Attempts to write 50 bytes but only 40 bytes actually available 7. BUG_ON() triggers Fix this by recalculating i_inline_size via ext4_find_inline_data_nolock() immediately after acquiring xattr_sem. This ensures ext4_update_inline_data() and ext4_create_inline_data() work with current values that are protected from concurrent modifications. This is similar to commit a54c4613dac1 ("ext4: fix race writing to an inline_data file while its xattrs are changing") which fixed i_inline_off staleness. This patch addresses the related i_inline_size staleness issue.
CVE-2025-68263
N/A
16 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: ksmbd: ipc: fix use-after-free in ipc_msg_send_request ipc_msg_send_request() waits for a generic netlink reply using an ipc_msg_table_entry on the stack. The generic netlink handler (handle_generic_event()/handle_response()) fills entry->response under ipc_msg_table_lock, but ipc_msg_send_request() used to validate and free entry->response without holding the same lock. Under high concurrency this allows a race where handle_response() is copying data into entry->response while ipc_msg_send_request() has just freed it, leading to a slab-use-after-free reported by KASAN in handle_generic_event(): BUG: KASAN: slab-use-after-free in handle_generic_event+0x3c4/0x5f0 [ksmbd] Write of size 12 at addr ffff888198ee6e20 by task pool/109349 ... Freed by task: kvfree ipc_msg_send_request [ksmbd] ksmbd_rpc_open -> ksmbd_session_rpc_open [ksmbd] Fix by: - Taking ipc_msg_table_lock in ipc_msg_send_request() while validating entry->response, freeing it when invalid, and removing the entry from ipc_msg_table. - Returning the final entry->response pointer to the caller only after the hash entry is removed under the lock. - Returning NULL in the error path, preserving the original API semantics. This makes all accesses to entry->response consistent with handle_response(), which already updates and fills the response buffer under ipc_msg_table_lock, and closes the race that allowed the UAF.
CVE-2025-68261
N/A
16 Dec 2025
In the Linux kernel, the following vulnerability has been resolved: ext4: add i_data_sem protection in ext4_destroy_inline_data_nolock() Fix a race between inline data destruction and block mapping. The function ext4_destroy_inline_data_nolock() changes the inode data layout by clearing EXT4_INODE_INLINE_DATA and setting EXT4_INODE_EXTENTS. At the same time, another thread may execute ext4_map_blocks(), which tests EXT4_INODE_EXTENTS to decide whether to call ext4_ext_map_blocks() or ext4_ind_map_blocks(). Without i_data_sem protection, ext4_ind_map_blocks() may receive inode with EXT4_INODE_EXTENTS flag and triggering assert. kernel BUG at fs/ext4/indirect.c:546! EXT4-fs (loop2): unmounting filesystem. invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 RIP: 0010:ext4_ind_map_blocks.cold+0x2b/0x5a fs/ext4/indirect.c:546 Call Trace: <TASK> ext4_map_blocks+0xb9b/0x16f0 fs/ext4/inode.c:681 _ext4_get_block+0x242/0x590 fs/ext4/inode.c:822 ext4_block_write_begin+0x48b/0x12c0 fs/ext4/inode.c:1124 ext4_write_begin+0x598/0xef0 fs/ext4/inode.c:1255 ext4_da_write_begin+0x21e/0x9c0 fs/ext4/inode.c:3000 generic_perform_write+0x259/0x5d0 mm/filemap.c:3846 ext4_buffered_write_iter+0x15b/0x470 fs/ext4/file.c:285 ext4_file_write_iter+0x8e0/0x17f0 fs/ext4/file.c:679 call_write_iter include/linux/fs.h:2271 [inline] do_iter_readv_writev+0x212/0x3c0 fs/read_write.c:735 do_iter_write+0x186/0x710 fs/read_write.c:861 vfs_iter_write+0x70/0xa0 fs/read_write.c:902 iter_file_splice_write+0x73b/0xc90 fs/splice.c:685 do_splice_from fs/splice.c:763 [inline] direct_splice_actor+0x10f/0x170 fs/splice.c:950 splice_direct_to_actor+0x33a/0xa10 fs/splice.c:896 do_splice_direct+0x1a9/0x280 fs/splice.c:1002 do_sendfile+0xb13/0x12c0 fs/read_write.c:1255 __do_sys_sendfile64 fs/read_write.c:1323 [inline] __se_sys_sendfile64 fs/read_write.c:1309 [inline] __x64_sys_sendfile64+0x1cf/0x210 fs/read_write.c:1309 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x35/0x80 arch/x86/entry/common.c:81 entry_SYSCALL_64_after_hwframe+0x6e/0xd8