Searching...
Please wait while we search the database
| CVE ID | Severity | Description | Published | Actions |
|---|---|---|---|---|
|
CVE-2025-64447
|
HIGH |
A reliance on cookies without validation and integrity checking vulnerability in Fortinet FortiWeb 8.0.0 through 8.0.1, FortiWeb 7.6.0 through 7.6.5, FortiWeb 7.4.0 through 7.4.10, FortiWeb 7.2.0 through 7.2.11, FortiWeb 7.0.0 through 7.0.11 may allow an unauthenticated attacker to execute arbitrary operations on the system via crafted HTTP or HTTPS request via forged cookies, requiring prior knowledge of the FortiWeb serial number.
|
09 Dec 2025
|
|
|
CVE-2025-12504
|
CRITICAL |
Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') vulnerability in Talent Software UNIS allows SQL Injection.This issue affects UNIS: before 42321.
|
09 Dec 2025
|
|
|
CVE-2025-6923
|
MEDIUM |
Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Talent Software UNIS allows Reflected XSS.This issue affects UNIS: before 42957.
|
09 Dec 2025
|
|
|
CVE-2025-6924
|
MEDIUM |
Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Talent Software e-BAP Automation allows Reflected XSS.This issue affects e-BAP Automation: before 42957.
|
09 Dec 2025
|
|
|
CVE-2025-14333
|
N/A |
Memory safety bugs present in Firefox ESR 140.5, Thunderbird ESR 140.5, Firefox 145 and Thunderbird 145. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 146, Firefox ESR < 140.6, Thunderbird < 146, and Thunderbird < 140.6.
|
09 Dec 2025
|
|
|
CVE-2025-14327
|
N/A |
Spoofing issue in the Downloads Panel component. This vulnerability affects Firefox < 146, Thunderbird < 146, Firefox ESR < 140.7, and Thunderbird < 140.7.
|
09 Dec 2025
|
|
|
CVE-2025-14325
|
N/A |
JIT miscompilation in the JavaScript Engine: JIT component. This vulnerability affects Firefox < 146, Firefox ESR < 140.6, Thunderbird < 146, and Thunderbird < 140.6.
|
09 Dec 2025
|
|
|
CVE-2024-56840
|
HIGH |
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.17.0), RUGGEDCOM ROX MX5000RE (All versions < V2.17.0), RUGGEDCOM ROX RX1400 (All versions < V2.17.0), RUGGEDCOM ROX RX1500 (All versions < V2.17.0), RUGGEDCOM ROX RX1501 (All versions < V2.17.0), RUGGEDCOM ROX RX1510 (All versions < V2.17.0), RUGGEDCOM ROX RX1511 (All versions < V2.17.0), RUGGEDCOM ROX RX1512 (All versions < V2.17.0), RUGGEDCOM ROX RX1524 (All versions < V2.17.0), RUGGEDCOM ROX RX1536 (All versions < V2.17.0), RUGGEDCOM ROX RX5000 (All versions < V2.17.0). Under certain conditions, IPsec may allow code injection in the affected device. An attacker could leverage this scenario to execute arbitrary code as root user.
|
09 Dec 2025
|
|
|
CVE-2024-56839
|
HIGH |
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.17.0), RUGGEDCOM ROX MX5000RE (All versions < V2.17.0), RUGGEDCOM ROX RX1400 (All versions < V2.17.0), RUGGEDCOM ROX RX1500 (All versions < V2.17.0), RUGGEDCOM ROX RX1501 (All versions < V2.17.0), RUGGEDCOM ROX RX1510 (All versions < V2.17.0), RUGGEDCOM ROX RX1511 (All versions < V2.17.0), RUGGEDCOM ROX RX1512 (All versions < V2.17.0), RUGGEDCOM ROX RX1524 (All versions < V2.17.0), RUGGEDCOM ROX RX1536 (All versions < V2.17.0), RUGGEDCOM ROX RX5000 (All versions < V2.17.0). Code injection can be achieved when the affected device is using VRF (Virtual Routing and Forwarding). An attacker could leverage this scenario to execute arbitrary code as root user.
|
09 Dec 2025
|
|
|
CVE-2024-56838
|
HIGH |
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.17.0), RUGGEDCOM ROX MX5000RE (All versions < V2.17.0), RUGGEDCOM ROX RX1400 (All versions < V2.17.0), RUGGEDCOM ROX RX1500 (All versions < V2.17.0), RUGGEDCOM ROX RX1501 (All versions < V2.17.0), RUGGEDCOM ROX RX1510 (All versions < V2.17.0), RUGGEDCOM ROX RX1511 (All versions < V2.17.0), RUGGEDCOM ROX RX1512 (All versions < V2.17.0), RUGGEDCOM ROX RX1524 (All versions < V2.17.0), RUGGEDCOM ROX RX1536 (All versions < V2.17.0), RUGGEDCOM ROX RX5000 (All versions < V2.17.0). The SCEP client available in the affected device for secure certificate enrollment lacks validation of multiple fields. An attacker could leverage this scenario to execute arbitrary code as root user.
|
09 Dec 2025
|
|
|
CVE-2024-56837
|
HIGH |
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.17.0), RUGGEDCOM ROX MX5000RE (All versions < V2.17.0), RUGGEDCOM ROX RX1400 (All versions < V2.17.0), RUGGEDCOM ROX RX1500 (All versions < V2.17.0), RUGGEDCOM ROX RX1501 (All versions < V2.17.0), RUGGEDCOM ROX RX1510 (All versions < V2.17.0), RUGGEDCOM ROX RX1511 (All versions < V2.17.0), RUGGEDCOM ROX RX1512 (All versions < V2.17.0), RUGGEDCOM ROX RX1524 (All versions < V2.17.0), RUGGEDCOM ROX RX1536 (All versions < V2.17.0), RUGGEDCOM ROX RX5000 (All versions < V2.17.0). Due to the insufficient validation during the installation and load of certain configuration files of the affected device, an attacker could spawn a reverse shell and gain root access on the affected system.
|
09 Dec 2025
|
|
|
CVE-2024-56836
|
HIGH |
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.17.0), RUGGEDCOM ROX MX5000RE (All versions < V2.17.0), RUGGEDCOM ROX RX1400 (All versions < V2.17.0), RUGGEDCOM ROX RX1500 (All versions < V2.17.0), RUGGEDCOM ROX RX1501 (All versions < V2.17.0), RUGGEDCOM ROX RX1510 (All versions < V2.17.0), RUGGEDCOM ROX RX1511 (All versions < V2.17.0), RUGGEDCOM ROX RX1512 (All versions < V2.17.0), RUGGEDCOM ROX RX1524 (All versions < V2.17.0), RUGGEDCOM ROX RX1536 (All versions < V2.17.0), RUGGEDCOM ROX RX5000 (All versions < V2.17.0). During the Dynamic DNS configuration of the affected product it is possible to inject additional configuration parameters. Under certain circumstances, an attacker could leverage this vulnerability to spawn a reverse shell and gain root access on the affected system.
|
09 Dec 2025
|
|
|
CVE-2024-56835
|
HIGH |
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.17.0), RUGGEDCOM ROX MX5000RE (All versions < V2.17.0), RUGGEDCOM ROX RX1400 (All versions < V2.17.0), RUGGEDCOM ROX RX1500 (All versions < V2.17.0), RUGGEDCOM ROX RX1501 (All versions < V2.17.0), RUGGEDCOM ROX RX1510 (All versions < V2.17.0), RUGGEDCOM ROX RX1511 (All versions < V2.17.0), RUGGEDCOM ROX RX1512 (All versions < V2.17.0), RUGGEDCOM ROX RX1524 (All versions < V2.17.0), RUGGEDCOM ROX RX1536 (All versions < V2.17.0), RUGGEDCOM ROX RX5000 (All versions < V2.17.0). The DHCP Server configuration file of the affected products is subject to code injection. An attacker could leverage this vulnerability to spawn a reverse shell and gain root access on the affected system.
|
09 Dec 2025
|
|
|
CVE-2025-13071
|
N/A |
The Custom Admin Menu WordPress plugin through 1.0.0 does not sanitise and escape a parameter before outputting it back in the page, leading to a Reflected Cross-Site Scripting which could be used against high privilege users such as admin.
|
09 Dec 2025
|
|
|
CVE-2025-13070
|
N/A |
The CSV to SortTable WordPress plugin through 4.2 does not validate some shortcode attributes before using them to generate paths passed to include function/s, allowing any authenticated users such as contributor to perform LFI attacks.
|
09 Dec 2025
|
|
|
CVE-2025-40341
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
futex: Don't leak robust_list pointer on exec race
sys_get_robust_list() and compat_get_robust_list() use ptrace_may_access()
to check if the calling task is allowed to access another task's
robust_list pointer. This check is racy against a concurrent exec() in the
target process.
During exec(), a task may transition from a non-privileged binary to a
privileged one (e.g., setuid binary) and its credentials/memory mappings
may change. If get_robust_list() performs ptrace_may_access() before
this transition, it may erroneously allow access to sensitive information
after the target becomes privileged.
A racy access allows an attacker to exploit a window during which
ptrace_may_access() passes before a target process transitions to a
privileged state via exec().
For example, consider a non-privileged task T that is about to execute a
setuid-root binary. An attacker task A calls get_robust_list(T) while T
is still unprivileged. Since ptrace_may_access() checks permissions
based on current credentials, it succeeds. However, if T begins exec
immediately afterwards, it becomes privileged and may change its memory
mappings. Because get_robust_list() proceeds to access T->robust_list
without synchronizing with exec() it may read user-space pointers from a
now-privileged process.
This violates the intended post-exec access restrictions and could
expose sensitive memory addresses or be used as a primitive in a larger
exploit chain. Consequently, the race can lead to unauthorized
disclosure of information across privilege boundaries and poses a
potential security risk.
Take a read lock on signal->exec_update_lock prior to invoking
ptrace_may_access() and accessing the robust_list/compat_robust_list.
This ensures that the target task's exec state remains stable during the
check, allowing for consistent and synchronized validation of
credentials.
|
09 Dec 2025
|
|
|
CVE-2025-40338
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: avs: Do not share the name pointer between components
By sharing 'name' directly, tearing down components may lead to
use-after-free errors. Duplicate the name to avoid that.
At the same time, update the order of operations - since commit
cee28113db17 ("ASoC: dmaengine_pcm: Allow passing component name via
config") the framework does not override component->name if set before
invoking the initializer.
|
09 Dec 2025
|
|
|
CVE-2025-40337
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: Correctly handle Rx checksum offload errors
The stmmac_rx function would previously set skb->ip_summed to
CHECKSUM_UNNECESSARY if hardware checksum offload (CoE) was enabled
and the packet was of a known IP ethertype.
However, this logic failed to check if the hardware had actually
reported a checksum error. The hardware status, indicating a header or
payload checksum failure, was being ignored at this stage. This could
cause corrupt packets to be passed up the network stack as valid.
This patch corrects the logic by checking the `csum_none` status flag,
which is set when the hardware reports a checksum error. If this flag
is set, skb->ip_summed is now correctly set to CHECKSUM_NONE,
ensuring the kernel's network stack will perform its own validation and
properly handle the corrupt packet.
|
09 Dec 2025
|
|
|
CVE-2025-40336
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
drm/gpusvm: fix hmm_pfn_to_map_order() usage
Handle the case where the hmm range partially covers a huge page (like
2M), otherwise we can potentially end up doing something nasty like
mapping memory which is outside the range, and maybe not even mapped by
the mm. Fix is based on the xe userptr code, which in a future patch
will directly use gpusvm, so needs alignment here.
v2:
- Add kernel-doc (Matt B)
- s/fls/ilog2/ (Thomas)
|
09 Dec 2025
|
|
|
CVE-2023-53866
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: soc-compress: Reposition and add pcm_mutex
If panic_on_warn is set and compress stream(DPCM) is started,
then kernel panic occurred because card->pcm_mutex isn't held appropriately.
In the following functions, warning were issued at this line
"snd_soc_dpcm_mutex_assert_held".
static int dpcm_be_connect(struct snd_soc_pcm_runtime *fe,
struct snd_soc_pcm_runtime *be, int stream)
{
...
snd_soc_dpcm_mutex_assert_held(fe);
...
}
void dpcm_be_disconnect(struct snd_soc_pcm_runtime *fe, int stream)
{
...
snd_soc_dpcm_mutex_assert_held(fe);
...
}
void snd_soc_runtime_action(struct snd_soc_pcm_runtime *rtd,
int stream, int action)
{
...
snd_soc_dpcm_mutex_assert_held(rtd);
...
}
int dpcm_dapm_stream_event(struct snd_soc_pcm_runtime *fe, int dir,
int event)
{
...
snd_soc_dpcm_mutex_assert_held(fe);
...
}
These functions are called by soc_compr_set_params_fe, soc_compr_open_fe
and soc_compr_free_fe
without pcm_mutex locking. And this is call stack.
[ 414.527841][ T2179] pc : dpcm_process_paths+0x5a4/0x750
[ 414.527848][ T2179] lr : dpcm_process_paths+0x37c/0x750
[ 414.527945][ T2179] Call trace:
[ 414.527949][ T2179] dpcm_process_paths+0x5a4/0x750
[ 414.527955][ T2179] soc_compr_open_fe+0xb0/0x2cc
[ 414.527972][ T2179] snd_compr_open+0x180/0x248
[ 414.527981][ T2179] snd_open+0x15c/0x194
[ 414.528003][ T2179] chrdev_open+0x1b0/0x220
[ 414.528023][ T2179] do_dentry_open+0x30c/0x594
[ 414.528045][ T2179] vfs_open+0x34/0x44
[ 414.528053][ T2179] path_openat+0x914/0xb08
[ 414.528062][ T2179] do_filp_open+0xc0/0x170
[ 414.528068][ T2179] do_sys_openat2+0x94/0x18c
[ 414.528076][ T2179] __arm64_sys_openat+0x78/0xa4
[ 414.528084][ T2179] invoke_syscall+0x48/0x10c
[ 414.528094][ T2179] el0_svc_common+0xbc/0x104
[ 414.528099][ T2179] do_el0_svc+0x34/0xd8
[ 414.528103][ T2179] el0_svc+0x34/0xc4
[ 414.528125][ T2179] el0t_64_sync_handler+0x8c/0xfc
[ 414.528133][ T2179] el0t_64_sync+0x1a0/0x1a4
[ 414.528142][ T2179] Kernel panic - not syncing: panic_on_warn set ...
So, I reposition and add pcm_mutex to resolve lockdep error.
|
09 Dec 2025
|
|
|
CVE-2023-53862
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
hfs: fix missing hfs_bnode_get() in __hfs_bnode_create
Syzbot found a kernel BUG in hfs_bnode_put():
kernel BUG at fs/hfs/bnode.c:466!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 3634 Comm: kworker/u4:5 Not tainted 6.1.0-rc7-syzkaller-00190-g97ee9d1c1696 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
Workqueue: writeback wb_workfn (flush-7:0)
RIP: 0010:hfs_bnode_put+0x46f/0x480 fs/hfs/bnode.c:466
Code: 8a 80 ff e9 73 fe ff ff 89 d9 80 e1 07 80 c1 03 38 c1 0f 8c a0 fe ff ff 48 89 df e8 db 8a 80 ff e9 93 fe ff ff e8 a1 68 2c ff <0f> 0b e8 9a 68 2c ff 0f 0b 0f 1f 84 00 00 00 00 00 55 41 57 41 56
RSP: 0018:ffffc90003b4f258 EFLAGS: 00010293
RAX: ffffffff825e318f RBX: 0000000000000000 RCX: ffff8880739dd7c0
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffc90003b4f430 R08: ffffffff825e2d9b R09: ffffed10045157d1
R10: ffffed10045157d1 R11: 1ffff110045157d0 R12: ffff8880228abe80
R13: ffff88807016c000 R14: dffffc0000000000 R15: ffff8880228abe00
FS: 0000000000000000(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa6ebe88718 CR3: 000000001e93d000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
hfs_write_inode+0x1bc/0xb40
write_inode fs/fs-writeback.c:1440 [inline]
__writeback_single_inode+0x4d6/0x670 fs/fs-writeback.c:1652
writeback_sb_inodes+0xb3b/0x18f0 fs/fs-writeback.c:1878
__writeback_inodes_wb+0x125/0x420 fs/fs-writeback.c:1949
wb_writeback+0x440/0x7b0 fs/fs-writeback.c:2054
wb_check_start_all fs/fs-writeback.c:2176 [inline]
wb_do_writeback fs/fs-writeback.c:2202 [inline]
wb_workfn+0x827/0xef0 fs/fs-writeback.c:2235
process_one_work+0x877/0xdb0 kernel/workqueue.c:2289
worker_thread+0xb14/0x1330 kernel/workqueue.c:2436
kthread+0x266/0x300 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
</TASK>
The BUG_ON() is triggered at here:
/* Dispose of resources used by a node */
void hfs_bnode_put(struct hfs_bnode *node)
{
if (node) {
<skipped>
BUG_ON(!atomic_read(&node->refcnt)); <- we have issue here!!!!
<skipped>
}
}
By tracing the refcnt, I found the node is created by hfs_bmap_alloc()
with refcnt 1. Then the node is used by hfs_btree_write(). There is a
missing of hfs_bnode_get() after find the node. The issue happened in
following path:
<alloc>
hfs_bmap_alloc
hfs_bnode_find
__hfs_bnode_create <- allocate a new node with refcnt 1.
hfs_bnode_put <- decrease the refcnt
<write>
hfs_btree_write
hfs_bnode_find
__hfs_bnode_create
hfs_bnode_findhash <- find the node without refcnt increased.
hfs_bnode_put <- trigger the BUG_ON() since refcnt is 0.
|
09 Dec 2025
|
|
|
CVE-2023-53859
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
s390/idle: mark arch_cpu_idle() noinstr
linux-next commit ("cpuidle: tracing: Warn about !rcu_is_watching()")
adds a new warning which hits on s390's arch_cpu_idle() function:
RCU not on for: arch_cpu_idle+0x0/0x28
WARNING: CPU: 2 PID: 0 at include/linux/trace_recursion.h:162 arch_ftrace_ops_list_func+0x24c/0x258
Modules linked in:
CPU: 2 PID: 0 Comm: swapper/2 Not tainted 6.2.0-rc6-next-20230202 #4
Hardware name: IBM 8561 T01 703 (z/VM 7.3.0)
Krnl PSW : 0404d00180000000 00000000002b55c0 (arch_ftrace_ops_list_func+0x250/0x258)
R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 RI:0 EA:3
Krnl GPRS: c0000000ffffbfff 0000000080000002 0000000000000026 0000000000000000
0000037ffffe3a28 0000037ffffe3a20 0000000000000000 0000000000000000
0000000000000000 0000000000f4acf6 00000000001044f0 0000037ffffe3cb0
0000000000000000 0000000000000000 00000000002b55bc 0000037ffffe3bb8
Krnl Code: 00000000002b55b0: c02000840051 larl %r2,0000000001335652
00000000002b55b6: c0e5fff512d1 brasl %r14,0000000000157b58
#00000000002b55bc: af000000 mc 0,0
>00000000002b55c0: a7f4ffe7 brc 15,00000000002b558e
00000000002b55c4: 0707 bcr 0,%r7
00000000002b55c6: 0707 bcr 0,%r7
00000000002b55c8: eb6ff0480024 stmg %r6,%r15,72(%r15)
00000000002b55ce: b90400ef lgr %r14,%r15
Call Trace:
[<00000000002b55c0>] arch_ftrace_ops_list_func+0x250/0x258
([<00000000002b55bc>] arch_ftrace_ops_list_func+0x24c/0x258)
[<0000000000f5f0fc>] ftrace_common+0x1c/0x20
[<00000000001044f6>] arch_cpu_idle+0x6/0x28
[<0000000000f4acf6>] default_idle_call+0x76/0x128
[<00000000001cc374>] do_idle+0xf4/0x1b0
[<00000000001cc6ce>] cpu_startup_entry+0x36/0x40
[<0000000000119d00>] smp_start_secondary+0x140/0x150
[<0000000000f5d2ae>] restart_int_handler+0x6e/0x90
Mark arch_cpu_idle() noinstr like all other architectures with
CONFIG_ARCH_WANTS_NO_INSTR (should) have it to fix this.
|
09 Dec 2025
|
|
|
CVE-2023-53845
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix infinite loop in nilfs_mdt_get_block()
If the disk image that nilfs2 mounts is corrupted and a virtual block
address obtained by block lookup for a metadata file is invalid,
nilfs_bmap_lookup_at_level() may return the same internal return code as
-ENOENT, meaning the block does not exist in the metadata file.
This duplication of return codes confuses nilfs_mdt_get_block(), causing
it to read and create a metadata block indefinitely.
In particular, if this happens to the inode metadata file, ifile,
semaphore i_rwsem can be left held, causing task hangs in lock_mount.
Fix this issue by making nilfs_bmap_lookup_at_level() treat virtual block
address translation failures with -ENOENT as metadata corruption instead
of returning the error code.
|
09 Dec 2025
|
|
|
CVE-2023-53841
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
devlink: report devlink_port_type_warn source device
devlink_port_type_warn is scheduled for port devlink and warning
when the port type is not set. But from this warning it is not easy
found out which device (driver) has no devlink port set.
[ 3709.975552] Type was not set for devlink port.
[ 3709.975579] WARNING: CPU: 1 PID: 13092 at net/devlink/leftover.c:6775 devlink_port_type_warn+0x11/0x20
[ 3709.993967] Modules linked in: openvswitch nf_conncount nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nfnetlink bluetooth rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs vhost_net vhost vhost_iotlb tap tun bridge stp llc qrtr intel_rapl_msr intel_rapl_common i10nm_edac nfit libnvdimm x86_pkg_temp_thermal mlx5_ib intel_powerclamp coretemp dell_wmi ledtrig_audio sparse_keymap ipmi_ssif kvm_intel ib_uverbs rfkill ib_core video kvm iTCO_wdt acpi_ipmi intel_vsec irqbypass ipmi_si iTCO_vendor_support dcdbas ipmi_devintf mei_me ipmi_msghandler rapl mei intel_cstate isst_if_mmio isst_if_mbox_pci dell_smbios intel_uncore isst_if_common i2c_i801 dell_wmi_descriptor wmi_bmof i2c_smbus intel_pch_thermal pcspkr acpi_power_meter xfs libcrc32c sd_mod sg nvme_tcp mgag200 i2c_algo_bit nvme_fabrics drm_shmem_helper drm_kms_helper nvme syscopyarea ahci sysfillrect sysimgblt nvme_core fb_sys_fops crct10dif_pclmul libahci mlx5_core sfc crc32_pclmul nvme_common drm
[ 3709.994030] crc32c_intel mtd t10_pi mlxfw libata tg3 mdio megaraid_sas psample ghash_clmulni_intel pci_hyperv_intf wmi dm_multipath sunrpc dm_mirror dm_region_hash dm_log dm_mod be2iscsi bnx2i cnic uio cxgb4i cxgb4 tls libcxgbi libcxgb qla4xxx iscsi_boot_sysfs iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi fuse
[ 3710.108431] CPU: 1 PID: 13092 Comm: kworker/1:1 Kdump: loaded Not tainted 5.14.0-319.el9.x86_64 #1
[ 3710.108435] Hardware name: Dell Inc. PowerEdge R750/0PJ80M, BIOS 1.8.2 09/14/2022
[ 3710.108437] Workqueue: events devlink_port_type_warn
[ 3710.108440] RIP: 0010:devlink_port_type_warn+0x11/0x20
[ 3710.108443] Code: 84 76 fe ff ff 48 c7 03 20 0e 1a ad 31 c0 e9 96 fd ff ff 66 0f 1f 44 00 00 0f 1f 44 00 00 48 c7 c7 18 24 4e ad e8 ef 71 62 ff <0f> 0b c3 cc cc cc cc 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 f6 87
[ 3710.108445] RSP: 0018:ff3b6d2e8b3c7e90 EFLAGS: 00010282
[ 3710.108447] RAX: 0000000000000000 RBX: ff366d6580127080 RCX: 0000000000000027
[ 3710.108448] RDX: 0000000000000027 RSI: 00000000ffff86de RDI: ff366d753f41f8c8
[ 3710.108449] RBP: ff366d658ff5a0c0 R08: ff366d753f41f8c0 R09: ff3b6d2e8b3c7e18
[ 3710.108450] R10: 0000000000000001 R11: 0000000000000023 R12: ff366d753f430600
[ 3710.108451] R13: ff366d753f436900 R14: 0000000000000000 R15: ff366d753f436905
[ 3710.108452] FS: 0000000000000000(0000) GS:ff366d753f400000(0000) knlGS:0000000000000000
[ 3710.108453] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 3710.108454] CR2: 00007f1c57bc74e0 CR3: 000000111d26a001 CR4: 0000000000773ee0
[ 3710.108456] PKRU: 55555554
[ 3710.108457] Call Trace:
[ 3710.108458] <TASK>
[ 3710.108459] process_one_work+0x1e2/0x3b0
[ 3710.108466] ? rescuer_thread+0x390/0x390
[ 3710.108468] worker_thread+0x50/0x3a0
[ 3710.108471] ? rescuer_thread+0x390/0x390
[ 3710.108473] kthread+0xdd/0x100
[ 3710.108477] ? kthread_complete_and_exit+0x20/0x20
[ 3710.108479] ret_from_fork+0x1f/0x30
[ 3710.108485] </TASK>
[ 3710.108486] ---[ end trace 1b4b23cd0c65d6a0 ]---
After patch:
[ 402.473064] ice 0000:41:00.0: Type was not set for devlink port.
[ 402.473064] ice 0000:41:00.1: Type was not set for devlink port.
|
09 Dec 2025
|
|
|
CVE-2023-53827
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: Fix use-after-free in l2cap_disconnect_{req,rsp}
Similar to commit d0be8347c623 ("Bluetooth: L2CAP: Fix use-after-free
caused by l2cap_chan_put"), just use l2cap_chan_hold_unless_zero to
prevent referencing a channel that is about to be destroyed.
|
09 Dec 2025
|
CVE-2025-64447
HIGH
09 Dec 2025
A reliance on cookies without validation and integrity checking vulnerability in Fortinet FortiWeb 8.0.0 through 8.0.1, FortiWeb 7.6.0 through 7.6.5, FortiWeb 7.4.0 through 7.4.10, FortiWeb 7.2.0 through 7.2.11, FortiWeb 7.0.0 through 7.0.11 may allow an unauthenticated attacker to execute arbitrary operations on the system via crafted HTTP or HTTPS request via forged cookies, requiring prior knowledge of the FortiWeb serial number.
CVE-2025-12504
CRITICAL
09 Dec 2025
Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') vulnerability in Talent Software UNIS allows SQL Injection.This issue affects UNIS: before 42321.
CVE-2025-6923
MEDIUM
09 Dec 2025
Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Talent Software UNIS allows Reflected XSS.This issue affects UNIS: before 42957.
CVE-2025-6924
MEDIUM
09 Dec 2025
Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Talent Software e-BAP Automation allows Reflected XSS.This issue affects e-BAP Automation: before 42957.
CVE-2025-14333
N/A
09 Dec 2025
Memory safety bugs present in Firefox ESR 140.5, Thunderbird ESR 140.5, Firefox 145 and Thunderbird 145. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 146, Firefox ESR < 140.6, Thunderbird < 146, and Thunderbird < 140.6.
CVE-2025-14327
N/A
09 Dec 2025
Spoofing issue in the Downloads Panel component. This vulnerability affects Firefox < 146, Thunderbird < 146, Firefox ESR < 140.7, and Thunderbird < 140.7.
CVE-2025-14325
N/A
09 Dec 2025
JIT miscompilation in the JavaScript Engine: JIT component. This vulnerability affects Firefox < 146, Firefox ESR < 140.6, Thunderbird < 146, and Thunderbird < 140.6.
CVE-2024-56840
HIGH
09 Dec 2025
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.17.0), RUGGEDCOM ROX MX5000RE (All versions < V2.17.0), RUGGEDCOM ROX RX1400 (All versions < V2.17.0), RUGGEDCOM ROX RX1500 (All versions < V2.17.0), RUGGEDCOM ROX RX1501 (All versions < V2.17.0), RUGGEDCOM ROX RX1510 (All versions < V2.17.0), RUGGEDCOM ROX RX1511 (All versions < V2.17.0), RUGGEDCOM ROX RX1512 (All versions < V2.17.0), RUGGEDCOM ROX RX1524 (All versions < V2.17.0), RUGGEDCOM ROX RX1536 (All versions < V2.17.0), RUGGEDCOM ROX RX5000 (All versions < V2.17.0). Under certain conditions, IPsec may allow code injection in the affected device. An attacker could leverage this scenario to execute arbitrary code as root user.
CVE-2024-56839
HIGH
09 Dec 2025
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.17.0), RUGGEDCOM ROX MX5000RE (All versions < V2.17.0), RUGGEDCOM ROX RX1400 (All versions < V2.17.0), RUGGEDCOM ROX RX1500 (All versions < V2.17.0), RUGGEDCOM ROX RX1501 (All versions < V2.17.0), RUGGEDCOM ROX RX1510 (All versions < V2.17.0), RUGGEDCOM ROX RX1511 (All versions < V2.17.0), RUGGEDCOM ROX RX1512 (All versions < V2.17.0), RUGGEDCOM ROX RX1524 (All versions < V2.17.0), RUGGEDCOM ROX RX1536 (All versions < V2.17.0), RUGGEDCOM ROX RX5000 (All versions < V2.17.0). Code injection can be achieved when the affected device is using VRF (Virtual Routing and Forwarding). An attacker could leverage this scenario to execute arbitrary code as root user.
CVE-2024-56838
HIGH
09 Dec 2025
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.17.0), RUGGEDCOM ROX MX5000RE (All versions < V2.17.0), RUGGEDCOM ROX RX1400 (All versions < V2.17.0), RUGGEDCOM ROX RX1500 (All versions < V2.17.0), RUGGEDCOM ROX RX1501 (All versions < V2.17.0), RUGGEDCOM ROX RX1510 (All versions < V2.17.0), RUGGEDCOM ROX RX1511 (All versions < V2.17.0), RUGGEDCOM ROX RX1512 (All versions < V2.17.0), RUGGEDCOM ROX RX1524 (All versions < V2.17.0), RUGGEDCOM ROX RX1536 (All versions < V2.17.0), RUGGEDCOM ROX RX5000 (All versions < V2.17.0). The SCEP client available in the affected device for secure certificate enrollment lacks validation of multiple fields. An attacker could leverage this scenario to execute arbitrary code as root user.
CVE-2024-56837
HIGH
09 Dec 2025
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.17.0), RUGGEDCOM ROX MX5000RE (All versions < V2.17.0), RUGGEDCOM ROX RX1400 (All versions < V2.17.0), RUGGEDCOM ROX RX1500 (All versions < V2.17.0), RUGGEDCOM ROX RX1501 (All versions < V2.17.0), RUGGEDCOM ROX RX1510 (All versions < V2.17.0), RUGGEDCOM ROX RX1511 (All versions < V2.17.0), RUGGEDCOM ROX RX1512 (All versions < V2.17.0), RUGGEDCOM ROX RX1524 (All versions < V2.17.0), RUGGEDCOM ROX RX1536 (All versions < V2.17.0), RUGGEDCOM ROX RX5000 (All versions < V2.17.0). Due to the insufficient validation during the installation and load of certain configuration files of the affected device, an attacker could spawn a reverse shell and gain root access on the affected system.
CVE-2024-56836
HIGH
09 Dec 2025
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.17.0), RUGGEDCOM ROX MX5000RE (All versions < V2.17.0), RUGGEDCOM ROX RX1400 (All versions < V2.17.0), RUGGEDCOM ROX RX1500 (All versions < V2.17.0), RUGGEDCOM ROX RX1501 (All versions < V2.17.0), RUGGEDCOM ROX RX1510 (All versions < V2.17.0), RUGGEDCOM ROX RX1511 (All versions < V2.17.0), RUGGEDCOM ROX RX1512 (All versions < V2.17.0), RUGGEDCOM ROX RX1524 (All versions < V2.17.0), RUGGEDCOM ROX RX1536 (All versions < V2.17.0), RUGGEDCOM ROX RX5000 (All versions < V2.17.0). During the Dynamic DNS configuration of the affected product it is possible to inject additional configuration parameters. Under certain circumstances, an attacker could leverage this vulnerability to spawn a reverse shell and gain root access on the affected system.
CVE-2024-56835
HIGH
09 Dec 2025
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.17.0), RUGGEDCOM ROX MX5000RE (All versions < V2.17.0), RUGGEDCOM ROX RX1400 (All versions < V2.17.0), RUGGEDCOM ROX RX1500 (All versions < V2.17.0), RUGGEDCOM ROX RX1501 (All versions < V2.17.0), RUGGEDCOM ROX RX1510 (All versions < V2.17.0), RUGGEDCOM ROX RX1511 (All versions < V2.17.0), RUGGEDCOM ROX RX1512 (All versions < V2.17.0), RUGGEDCOM ROX RX1524 (All versions < V2.17.0), RUGGEDCOM ROX RX1536 (All versions < V2.17.0), RUGGEDCOM ROX RX5000 (All versions < V2.17.0). The DHCP Server configuration file of the affected products is subject to code injection. An attacker could leverage this vulnerability to spawn a reverse shell and gain root access on the affected system.
CVE-2025-13071
N/A
09 Dec 2025
The Custom Admin Menu WordPress plugin through 1.0.0 does not sanitise and escape a parameter before outputting it back in the page, leading to a Reflected Cross-Site Scripting which could be used against high privilege users such as admin.
CVE-2025-13070
N/A
09 Dec 2025
The CSV to SortTable WordPress plugin through 4.2 does not validate some shortcode attributes before using them to generate paths passed to include function/s, allowing any authenticated users such as contributor to perform LFI attacks.
CVE-2025-40341
N/A
09 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
futex: Don't leak robust_list pointer on exec race
sys_get_robust_list() and compat_get_robust_list() use ptrace_may_access()
to check if the calling task is allowed to access another task's
robust_list pointer. This check is racy against a concurrent exec() in the
target process.
During exec(), a task may transition from a non-privileged binary to a
privileged one (e.g., setuid binary) and its credentials/memory mappings
may change. If get_robust_list() performs ptrace_may_access() before
this transition, it may erroneously allow access to sensitive information
after the target becomes privileged.
A racy access allows an attacker to exploit a window during which
ptrace_may_access() passes before a target process transitions to a
privileged state via exec().
For example, consider a non-privileged task T that is about to execute a
setuid-root binary. An attacker task A calls get_robust_list(T) while T
is still unprivileged. Since ptrace_may_access() checks permissions
based on current credentials, it succeeds. However, if T begins exec
immediately afterwards, it becomes privileged and may change its memory
mappings. Because get_robust_list() proceeds to access T->robust_list
without synchronizing with exec() it may read user-space pointers from a
now-privileged process.
This violates the intended post-exec access restrictions and could
expose sensitive memory addresses or be used as a primitive in a larger
exploit chain. Consequently, the race can lead to unauthorized
disclosure of information across privilege boundaries and poses a
potential security risk.
Take a read lock on signal->exec_update_lock prior to invoking
ptrace_may_access() and accessing the robust_list/compat_robust_list.
This ensures that the target task's exec state remains stable during the
check, allowing for consistent and synchronized validation of
credentials.
CVE-2025-40338
N/A
09 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: avs: Do not share the name pointer between components
By sharing 'name' directly, tearing down components may lead to
use-after-free errors. Duplicate the name to avoid that.
At the same time, update the order of operations - since commit
cee28113db17 ("ASoC: dmaengine_pcm: Allow passing component name via
config") the framework does not override component->name if set before
invoking the initializer.
CVE-2025-40337
N/A
09 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: Correctly handle Rx checksum offload errors
The stmmac_rx function would previously set skb->ip_summed to
CHECKSUM_UNNECESSARY if hardware checksum offload (CoE) was enabled
and the packet was of a known IP ethertype.
However, this logic failed to check if the hardware had actually
reported a checksum error. The hardware status, indicating a header or
payload checksum failure, was being ignored at this stage. This could
cause corrupt packets to be passed up the network stack as valid.
This patch corrects the logic by checking the `csum_none` status flag,
which is set when the hardware reports a checksum error. If this flag
is set, skb->ip_summed is now correctly set to CHECKSUM_NONE,
ensuring the kernel's network stack will perform its own validation and
properly handle the corrupt packet.
CVE-2025-40336
N/A
09 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
drm/gpusvm: fix hmm_pfn_to_map_order() usage
Handle the case where the hmm range partially covers a huge page (like
2M), otherwise we can potentially end up doing something nasty like
mapping memory which is outside the range, and maybe not even mapped by
the mm. Fix is based on the xe userptr code, which in a future patch
will directly use gpusvm, so needs alignment here.
v2:
- Add kernel-doc (Matt B)
- s/fls/ilog2/ (Thomas)
CVE-2023-53866
N/A
09 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
ASoC: soc-compress: Reposition and add pcm_mutex
If panic_on_warn is set and compress stream(DPCM) is started,
then kernel panic occurred because card->pcm_mutex isn't held appropriately.
In the following functions, warning were issued at this line
"snd_soc_dpcm_mutex_assert_held".
static int dpcm_be_connect(struct snd_soc_pcm_runtime *fe,
struct snd_soc_pcm_runtime *be, int stream)
{
...
snd_soc_dpcm_mutex_assert_held(fe);
...
}
void dpcm_be_disconnect(struct snd_soc_pcm_runtime *fe, int stream)
{
...
snd_soc_dpcm_mutex_assert_held(fe);
...
}
void snd_soc_runtime_action(struct snd_soc_pcm_runtime *rtd,
int stream, int action)
{
...
snd_soc_dpcm_mutex_assert_held(rtd);
...
}
int dpcm_dapm_stream_event(struct snd_soc_pcm_runtime *fe, int dir,
int event)
{
...
snd_soc_dpcm_mutex_assert_held(fe);
...
}
These functions are called by soc_compr_set_params_fe, soc_compr_open_fe
and soc_compr_free_fe
without pcm_mutex locking. And this is call stack.
[ 414.527841][ T2179] pc : dpcm_process_paths+0x5a4/0x750
[ 414.527848][ T2179] lr : dpcm_process_paths+0x37c/0x750
[ 414.527945][ T2179] Call trace:
[ 414.527949][ T2179] dpcm_process_paths+0x5a4/0x750
[ 414.527955][ T2179] soc_compr_open_fe+0xb0/0x2cc
[ 414.527972][ T2179] snd_compr_open+0x180/0x248
[ 414.527981][ T2179] snd_open+0x15c/0x194
[ 414.528003][ T2179] chrdev_open+0x1b0/0x220
[ 414.528023][ T2179] do_dentry_open+0x30c/0x594
[ 414.528045][ T2179] vfs_open+0x34/0x44
[ 414.528053][ T2179] path_openat+0x914/0xb08
[ 414.528062][ T2179] do_filp_open+0xc0/0x170
[ 414.528068][ T2179] do_sys_openat2+0x94/0x18c
[ 414.528076][ T2179] __arm64_sys_openat+0x78/0xa4
[ 414.528084][ T2179] invoke_syscall+0x48/0x10c
[ 414.528094][ T2179] el0_svc_common+0xbc/0x104
[ 414.528099][ T2179] do_el0_svc+0x34/0xd8
[ 414.528103][ T2179] el0_svc+0x34/0xc4
[ 414.528125][ T2179] el0t_64_sync_handler+0x8c/0xfc
[ 414.528133][ T2179] el0t_64_sync+0x1a0/0x1a4
[ 414.528142][ T2179] Kernel panic - not syncing: panic_on_warn set ...
So, I reposition and add pcm_mutex to resolve lockdep error.
CVE-2023-53862
N/A
09 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
hfs: fix missing hfs_bnode_get() in __hfs_bnode_create
Syzbot found a kernel BUG in hfs_bnode_put():
kernel BUG at fs/hfs/bnode.c:466!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 3634 Comm: kworker/u4:5 Not tainted 6.1.0-rc7-syzkaller-00190-g97ee9d1c1696 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
Workqueue: writeback wb_workfn (flush-7:0)
RIP: 0010:hfs_bnode_put+0x46f/0x480 fs/hfs/bnode.c:466
Code: 8a 80 ff e9 73 fe ff ff 89 d9 80 e1 07 80 c1 03 38 c1 0f 8c a0 fe ff ff 48 89 df e8 db 8a 80 ff e9 93 fe ff ff e8 a1 68 2c ff <0f> 0b e8 9a 68 2c ff 0f 0b 0f 1f 84 00 00 00 00 00 55 41 57 41 56
RSP: 0018:ffffc90003b4f258 EFLAGS: 00010293
RAX: ffffffff825e318f RBX: 0000000000000000 RCX: ffff8880739dd7c0
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffc90003b4f430 R08: ffffffff825e2d9b R09: ffffed10045157d1
R10: ffffed10045157d1 R11: 1ffff110045157d0 R12: ffff8880228abe80
R13: ffff88807016c000 R14: dffffc0000000000 R15: ffff8880228abe00
FS: 0000000000000000(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa6ebe88718 CR3: 000000001e93d000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
hfs_write_inode+0x1bc/0xb40
write_inode fs/fs-writeback.c:1440 [inline]
__writeback_single_inode+0x4d6/0x670 fs/fs-writeback.c:1652
writeback_sb_inodes+0xb3b/0x18f0 fs/fs-writeback.c:1878
__writeback_inodes_wb+0x125/0x420 fs/fs-writeback.c:1949
wb_writeback+0x440/0x7b0 fs/fs-writeback.c:2054
wb_check_start_all fs/fs-writeback.c:2176 [inline]
wb_do_writeback fs/fs-writeback.c:2202 [inline]
wb_workfn+0x827/0xef0 fs/fs-writeback.c:2235
process_one_work+0x877/0xdb0 kernel/workqueue.c:2289
worker_thread+0xb14/0x1330 kernel/workqueue.c:2436
kthread+0x266/0x300 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
</TASK>
The BUG_ON() is triggered at here:
/* Dispose of resources used by a node */
void hfs_bnode_put(struct hfs_bnode *node)
{
if (node) {
<skipped>
BUG_ON(!atomic_read(&node->refcnt)); <- we have issue here!!!!
<skipped>
}
}
By tracing the refcnt, I found the node is created by hfs_bmap_alloc()
with refcnt 1. Then the node is used by hfs_btree_write(). There is a
missing of hfs_bnode_get() after find the node. The issue happened in
following path:
<alloc>
hfs_bmap_alloc
hfs_bnode_find
__hfs_bnode_create <- allocate a new node with refcnt 1.
hfs_bnode_put <- decrease the refcnt
<write>
hfs_btree_write
hfs_bnode_find
__hfs_bnode_create
hfs_bnode_findhash <- find the node without refcnt increased.
hfs_bnode_put <- trigger the BUG_ON() since refcnt is 0.
CVE-2023-53859
N/A
09 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
s390/idle: mark arch_cpu_idle() noinstr
linux-next commit ("cpuidle: tracing: Warn about !rcu_is_watching()")
adds a new warning which hits on s390's arch_cpu_idle() function:
RCU not on for: arch_cpu_idle+0x0/0x28
WARNING: CPU: 2 PID: 0 at include/linux/trace_recursion.h:162 arch_ftrace_ops_list_func+0x24c/0x258
Modules linked in:
CPU: 2 PID: 0 Comm: swapper/2 Not tainted 6.2.0-rc6-next-20230202 #4
Hardware name: IBM 8561 T01 703 (z/VM 7.3.0)
Krnl PSW : 0404d00180000000 00000000002b55c0 (arch_ftrace_ops_list_func+0x250/0x258)
R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 RI:0 EA:3
Krnl GPRS: c0000000ffffbfff 0000000080000002 0000000000000026 0000000000000000
0000037ffffe3a28 0000037ffffe3a20 0000000000000000 0000000000000000
0000000000000000 0000000000f4acf6 00000000001044f0 0000037ffffe3cb0
0000000000000000 0000000000000000 00000000002b55bc 0000037ffffe3bb8
Krnl Code: 00000000002b55b0: c02000840051 larl %r2,0000000001335652
00000000002b55b6: c0e5fff512d1 brasl %r14,0000000000157b58
#00000000002b55bc: af000000 mc 0,0
>00000000002b55c0: a7f4ffe7 brc 15,00000000002b558e
00000000002b55c4: 0707 bcr 0,%r7
00000000002b55c6: 0707 bcr 0,%r7
00000000002b55c8: eb6ff0480024 stmg %r6,%r15,72(%r15)
00000000002b55ce: b90400ef lgr %r14,%r15
Call Trace:
[<00000000002b55c0>] arch_ftrace_ops_list_func+0x250/0x258
([<00000000002b55bc>] arch_ftrace_ops_list_func+0x24c/0x258)
[<0000000000f5f0fc>] ftrace_common+0x1c/0x20
[<00000000001044f6>] arch_cpu_idle+0x6/0x28
[<0000000000f4acf6>] default_idle_call+0x76/0x128
[<00000000001cc374>] do_idle+0xf4/0x1b0
[<00000000001cc6ce>] cpu_startup_entry+0x36/0x40
[<0000000000119d00>] smp_start_secondary+0x140/0x150
[<0000000000f5d2ae>] restart_int_handler+0x6e/0x90
Mark arch_cpu_idle() noinstr like all other architectures with
CONFIG_ARCH_WANTS_NO_INSTR (should) have it to fix this.
CVE-2023-53845
N/A
09 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix infinite loop in nilfs_mdt_get_block()
If the disk image that nilfs2 mounts is corrupted and a virtual block
address obtained by block lookup for a metadata file is invalid,
nilfs_bmap_lookup_at_level() may return the same internal return code as
-ENOENT, meaning the block does not exist in the metadata file.
This duplication of return codes confuses nilfs_mdt_get_block(), causing
it to read and create a metadata block indefinitely.
In particular, if this happens to the inode metadata file, ifile,
semaphore i_rwsem can be left held, causing task hangs in lock_mount.
Fix this issue by making nilfs_bmap_lookup_at_level() treat virtual block
address translation failures with -ENOENT as metadata corruption instead
of returning the error code.
CVE-2023-53841
N/A
09 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
devlink: report devlink_port_type_warn source device
devlink_port_type_warn is scheduled for port devlink and warning
when the port type is not set. But from this warning it is not easy
found out which device (driver) has no devlink port set.
[ 3709.975552] Type was not set for devlink port.
[ 3709.975579] WARNING: CPU: 1 PID: 13092 at net/devlink/leftover.c:6775 devlink_port_type_warn+0x11/0x20
[ 3709.993967] Modules linked in: openvswitch nf_conncount nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nfnetlink bluetooth rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs vhost_net vhost vhost_iotlb tap tun bridge stp llc qrtr intel_rapl_msr intel_rapl_common i10nm_edac nfit libnvdimm x86_pkg_temp_thermal mlx5_ib intel_powerclamp coretemp dell_wmi ledtrig_audio sparse_keymap ipmi_ssif kvm_intel ib_uverbs rfkill ib_core video kvm iTCO_wdt acpi_ipmi intel_vsec irqbypass ipmi_si iTCO_vendor_support dcdbas ipmi_devintf mei_me ipmi_msghandler rapl mei intel_cstate isst_if_mmio isst_if_mbox_pci dell_smbios intel_uncore isst_if_common i2c_i801 dell_wmi_descriptor wmi_bmof i2c_smbus intel_pch_thermal pcspkr acpi_power_meter xfs libcrc32c sd_mod sg nvme_tcp mgag200 i2c_algo_bit nvme_fabrics drm_shmem_helper drm_kms_helper nvme syscopyarea ahci sysfillrect sysimgblt nvme_core fb_sys_fops crct10dif_pclmul libahci mlx5_core sfc crc32_pclmul nvme_common drm
[ 3709.994030] crc32c_intel mtd t10_pi mlxfw libata tg3 mdio megaraid_sas psample ghash_clmulni_intel pci_hyperv_intf wmi dm_multipath sunrpc dm_mirror dm_region_hash dm_log dm_mod be2iscsi bnx2i cnic uio cxgb4i cxgb4 tls libcxgbi libcxgb qla4xxx iscsi_boot_sysfs iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi fuse
[ 3710.108431] CPU: 1 PID: 13092 Comm: kworker/1:1 Kdump: loaded Not tainted 5.14.0-319.el9.x86_64 #1
[ 3710.108435] Hardware name: Dell Inc. PowerEdge R750/0PJ80M, BIOS 1.8.2 09/14/2022
[ 3710.108437] Workqueue: events devlink_port_type_warn
[ 3710.108440] RIP: 0010:devlink_port_type_warn+0x11/0x20
[ 3710.108443] Code: 84 76 fe ff ff 48 c7 03 20 0e 1a ad 31 c0 e9 96 fd ff ff 66 0f 1f 44 00 00 0f 1f 44 00 00 48 c7 c7 18 24 4e ad e8 ef 71 62 ff <0f> 0b c3 cc cc cc cc 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 f6 87
[ 3710.108445] RSP: 0018:ff3b6d2e8b3c7e90 EFLAGS: 00010282
[ 3710.108447] RAX: 0000000000000000 RBX: ff366d6580127080 RCX: 0000000000000027
[ 3710.108448] RDX: 0000000000000027 RSI: 00000000ffff86de RDI: ff366d753f41f8c8
[ 3710.108449] RBP: ff366d658ff5a0c0 R08: ff366d753f41f8c0 R09: ff3b6d2e8b3c7e18
[ 3710.108450] R10: 0000000000000001 R11: 0000000000000023 R12: ff366d753f430600
[ 3710.108451] R13: ff366d753f436900 R14: 0000000000000000 R15: ff366d753f436905
[ 3710.108452] FS: 0000000000000000(0000) GS:ff366d753f400000(0000) knlGS:0000000000000000
[ 3710.108453] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 3710.108454] CR2: 00007f1c57bc74e0 CR3: 000000111d26a001 CR4: 0000000000773ee0
[ 3710.108456] PKRU: 55555554
[ 3710.108457] Call Trace:
[ 3710.108458] <TASK>
[ 3710.108459] process_one_work+0x1e2/0x3b0
[ 3710.108466] ? rescuer_thread+0x390/0x390
[ 3710.108468] worker_thread+0x50/0x3a0
[ 3710.108471] ? rescuer_thread+0x390/0x390
[ 3710.108473] kthread+0xdd/0x100
[ 3710.108477] ? kthread_complete_and_exit+0x20/0x20
[ 3710.108479] ret_from_fork+0x1f/0x30
[ 3710.108485] </TASK>
[ 3710.108486] ---[ end trace 1b4b23cd0c65d6a0 ]---
After patch:
[ 402.473064] ice 0000:41:00.0: Type was not set for devlink port.
[ 402.473064] ice 0000:41:00.1: Type was not set for devlink port.
CVE-2023-53827
N/A
09 Dec 2025
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: Fix use-after-free in l2cap_disconnect_{req,rsp}
Similar to commit d0be8347c623 ("Bluetooth: L2CAP: Fix use-after-free
caused by l2cap_chan_put"), just use l2cap_chan_hold_unless_zero to
prevent referencing a channel that is about to be destroyed.
Page 166 of 686
Page 166 of 686