Searching...
Please wait while we search the database
| CVE ID | Severity | Description | Published | Actions |
|---|---|---|---|---|
|
CVE-2022-50406
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
iomap: iomap: fix memory corruption when recording errors during writeback
Every now and then I see this crash on arm64:
Unable to handle kernel NULL pointer dereference at virtual address 00000000000000f8
Buffer I/O error on dev dm-0, logical block 8733687, async page read
Mem abort info:
ESR = 0x0000000096000006
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x06: level 2 translation fault
Data abort info:
ISV = 0, ISS = 0x00000006
CM = 0, WnR = 0
user pgtable: 64k pages, 42-bit VAs, pgdp=0000000139750000
[00000000000000f8] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000, pmd=0000000000000000
Internal error: Oops: 96000006 [#1] PREEMPT SMP
Buffer I/O error on dev dm-0, logical block 8733688, async page read
Dumping ftrace buffer:
Buffer I/O error on dev dm-0, logical block 8733689, async page read
(ftrace buffer empty)
XFS (dm-0): log I/O error -5
Modules linked in: dm_thin_pool dm_persistent_data
XFS (dm-0): Metadata I/O Error (0x1) detected at xfs_trans_read_buf_map+0x1ec/0x590 [xfs] (fs/xfs/xfs_trans_buf.c:296).
dm_bio_prison
XFS (dm-0): Please unmount the filesystem and rectify the problem(s)
XFS (dm-0): xfs_imap_lookup: xfs_ialloc_read_agi() returned error -5, agno 0
dm_bufio dm_log_writes xfs nft_chain_nat xt_REDIRECT nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip6t_REJECT
potentially unexpected fatal signal 6.
nf_reject_ipv6
potentially unexpected fatal signal 6.
ipt_REJECT nf_reject_ipv4
CPU: 1 PID: 122166 Comm: fsstress Tainted: G W 6.0.0-rc5-djwa #rc5 3004c9f1de887ebae86015f2677638ce51ee7
rpcsec_gss_krb5 auth_rpcgss xt_tcpudp ip_set_hash_ip ip_set_hash_net xt_set nft_compat ip_set_hash_mac ip_set nf_tables
Hardware name: QEMU KVM Virtual Machine, BIOS 1.5.1 06/16/2021
pstate: 60001000 (nZCv daif -PAN -UAO -TCO -DIT +SSBS BTYPE=--)
ip_tables
pc : 000003fd6d7df200
x_tables
lr : 000003fd6d7df1ec
overlay nfsv4
CPU: 0 PID: 54031 Comm: u4:3 Tainted: G W 6.0.0-rc5-djwa #rc5 3004c9f1de887ebae86015f2677638ce51ee7405
Hardware name: QEMU KVM Virtual Machine, BIOS 1.5.1 06/16/2021
Workqueue: writeback wb_workfn
sp : 000003ffd9522fd0
(flush-253:0)
pstate: 60401005 (nZCv daif +PAN -UAO -TCO -DIT +SSBS BTYPE=--)
pc : errseq_set+0x1c/0x100
x29: 000003ffd9522fd0 x28: 0000000000000023 x27: 000002acefeb6780
x26: 0000000000000005 x25: 0000000000000001 x24: 0000000000000000
x23: 00000000ffffffff x22: 0000000000000005
lr : __filemap_set_wb_err+0x24/0xe0
x21: 0000000000000006
sp : fffffe000f80f760
x29: fffffe000f80f760 x28: 0000000000000003 x27: fffffe000f80f9f8
x26: 0000000002523000 x25: 00000000fffffffb x24: fffffe000f80f868
x23: fffffe000f80fbb0 x22: fffffc0180c26a78 x21: 0000000002530000
x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
x14: 0000000000000001 x13: 0000000000470af3 x12: fffffc0058f70000
x11: 0000000000000040 x10: 0000000000001b20 x9 : fffffe000836b288
x8 : fffffc00eb9fd480 x7 : 0000000000f83659 x6 : 0000000000000000
x5 : 0000000000000869 x4 : 0000000000000005 x3 : 00000000000000f8
x20: 000003fd6d740020 x19: 000000000001dd36 x18: 0000000000000001
x17: 000003fd6d78704c x16: 0000000000000001 x15: 000002acfac87668
x2 : 0000000000000ffa x1 : 00000000fffffffb x0 : 00000000000000f8
Call trace:
errseq_set+0x1c/0x100
__filemap_set_wb_err+0x24/0xe0
iomap_do_writepage+0x5e4/0xd5c
write_cache_pages+0x208/0x674
iomap_writepages+0x34/0x60
xfs_vm_writepages+0x8c/0xcc [xfs 7a861f39c43631f15d3a5884246ba5035d4ca78b]
x14: 0000000000000000 x13: 2064656e72757465 x12: 0000000000002180
x11: 000003fd6d8a82d0 x10: 0000000000000000 x9 : 000003fd6d8ae288
x8 : 0000000000000083 x7 : 00000000ffffffff x6 : 00000000ffffffee
x5 : 00000000fbad2887 x4 : 000003fd6d9abb58 x3 : 000003fd6d740020
x2 : 0000000000000006 x1 : 000000000001dd36 x0 : 0000000000000000
CPU:
---truncated---
|
18 Sep 2025
|
|
|
CVE-2022-50405
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
net/tunnel: wait until all sk_user_data reader finish before releasing the sock
There is a race condition in vxlan that when deleting a vxlan device
during receiving packets, there is a possibility that the sock is
released after getting vxlan_sock vs from sk_user_data. Then in
later vxlan_ecn_decapsulate(), vxlan_get_sk_family() we will got
NULL pointer dereference. e.g.
#0 [ffffa25ec6978a38] machine_kexec at ffffffff8c669757
#1 [ffffa25ec6978a90] __crash_kexec at ffffffff8c7c0a4d
#2 [ffffa25ec6978b58] crash_kexec at ffffffff8c7c1c48
#3 [ffffa25ec6978b60] oops_end at ffffffff8c627f2b
#4 [ffffa25ec6978b80] page_fault_oops at ffffffff8c678fcb
#5 [ffffa25ec6978bd8] exc_page_fault at ffffffff8d109542
#6 [ffffa25ec6978c00] asm_exc_page_fault at ffffffff8d200b62
[exception RIP: vxlan_ecn_decapsulate+0x3b]
RIP: ffffffffc1014e7b RSP: ffffa25ec6978cb0 RFLAGS: 00010246
RAX: 0000000000000008 RBX: ffff8aa000888000 RCX: 0000000000000000
RDX: 000000000000000e RSI: ffff8a9fc7ab803e RDI: ffff8a9fd1168700
RBP: ffff8a9fc7ab803e R8: 0000000000700000 R9: 00000000000010ae
R10: ffff8a9fcb748980 R11: 0000000000000000 R12: ffff8a9fd1168700
R13: ffff8aa000888000 R14: 00000000002a0000 R15: 00000000000010ae
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
#7 [ffffa25ec6978ce8] vxlan_rcv at ffffffffc10189cd [vxlan]
#8 [ffffa25ec6978d90] udp_queue_rcv_one_skb at ffffffff8cfb6507
#9 [ffffa25ec6978dc0] udp_unicast_rcv_skb at ffffffff8cfb6e45
#10 [ffffa25ec6978dc8] __udp4_lib_rcv at ffffffff8cfb8807
#11 [ffffa25ec6978e20] ip_protocol_deliver_rcu at ffffffff8cf76951
#12 [ffffa25ec6978e48] ip_local_deliver at ffffffff8cf76bde
#13 [ffffa25ec6978ea0] __netif_receive_skb_one_core at ffffffff8cecde9b
#14 [ffffa25ec6978ec8] process_backlog at ffffffff8cece139
#15 [ffffa25ec6978f00] __napi_poll at ffffffff8ceced1a
#16 [ffffa25ec6978f28] net_rx_action at ffffffff8cecf1f3
#17 [ffffa25ec6978fa0] __softirqentry_text_start at ffffffff8d4000ca
#18 [ffffa25ec6978ff0] do_softirq at ffffffff8c6fbdc3
Reproducer: https://github.com/Mellanox/ovs-tests/blob/master/test-ovs-vxlan-remove-tunnel-during-traffic.sh
Fix this by waiting for all sk_user_data reader to finish before
releasing the sock.
|
18 Sep 2025
|
|
|
CVE-2022-50404
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
fbdev: fbcon: release buffer when fbcon_do_set_font() failed
syzbot is reporting memory leak at fbcon_do_set_font() [1], for
commit a5a923038d70 ("fbdev: fbcon: Properly revert changes when
vc_resize() failed") missed that the buffer might be newly allocated
by fbcon_set_font().
|
18 Sep 2025
|
|
|
CVE-2022-50402
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
drivers/md/md-bitmap: check the return value of md_bitmap_get_counter()
Check the return value of md_bitmap_get_counter() in case it returns
NULL pointer, which will result in a null pointer dereference.
v2: update the check to include other dereference
|
18 Sep 2025
|
|
|
CVE-2022-50401
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
nfsd: under NFSv4.1, fix double svc_xprt_put on rpc_create failure
On error situation `clp->cl_cb_conn.cb_xprt` should not be given
a reference to the xprt otherwise both client cleanup and the
error handling path of the caller call to put it. Better to
delay handing over the reference to a later branch.
[ 72.530665] refcount_t: underflow; use-after-free.
[ 72.531933] WARNING: CPU: 0 PID: 173 at lib/refcount.c:28 refcount_warn_saturate+0xcf/0x120
[ 72.533075] Modules linked in: nfsd(OE) nfsv4(OE) nfsv3(OE) nfs(OE) lockd(OE) compat_nfs_ssc(OE) nfs_acl(OE) rpcsec_gss_krb5(OE) auth_rpcgss(OE) rpcrdma(OE) dns_resolver fscache netfs grace rdma_cm iw_cm ib_cm sunrpc(OE) mlx5_ib mlx5_core mlxfw pci_hyperv_intf ib_uverbs ib_core xt_MASQUERADE nf_conntrack_netlink nft_counter xt_addrtype nft_compat br_netfilter bridge stp llc nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set overlay nf_tables nfnetlink crct10dif_pclmul crc32_pclmul ghash_clmulni_intel xfs serio_raw virtio_net virtio_blk net_failover failover fuse [last unloaded: sunrpc]
[ 72.540389] CPU: 0 PID: 173 Comm: kworker/u16:5 Tainted: G OE 5.15.82-dan #1
[ 72.541511] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.16.0-3.module+el8.7.0+1084+97b81f61 04/01/2014
[ 72.542717] Workqueue: nfsd4_callbacks nfsd4_run_cb_work [nfsd]
[ 72.543575] RIP: 0010:refcount_warn_saturate+0xcf/0x120
[ 72.544299] Code: 55 00 0f 0b 5d e9 01 50 98 00 80 3d 75 9e 39 08 00 0f 85 74 ff ff ff 48 c7 c7 e8 d1 60 8e c6 05 61 9e 39 08 01 e8 f6 51 55 00 <0f> 0b 5d e9 d9 4f 98 00 80 3d 4b 9e 39 08 00 0f 85 4c ff ff ff 48
[ 72.546666] RSP: 0018:ffffb3f841157cf0 EFLAGS: 00010286
[ 72.547393] RAX: 0000000000000026 RBX: ffff89ac6231d478 RCX: 0000000000000000
[ 72.548324] RDX: ffff89adb7c2c2c0 RSI: ffff89adb7c205c0 RDI: ffff89adb7c205c0
[ 72.549271] RBP: ffffb3f841157cf0 R08: 0000000000000000 R09: c0000000ffefffff
[ 72.550209] R10: 0000000000000001 R11: ffffb3f841157ad0 R12: ffff89ac6231d180
[ 72.551142] R13: ffff89ac6231d478 R14: ffff89ac40c06180 R15: ffff89ac6231d4b0
[ 72.552089] FS: 0000000000000000(0000) GS:ffff89adb7c00000(0000) knlGS:0000000000000000
[ 72.553175] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 72.553934] CR2: 0000563a310506a8 CR3: 0000000109a66000 CR4: 0000000000350ef0
[ 72.554874] Call Trace:
[ 72.555278] <TASK>
[ 72.555614] svc_xprt_put+0xaf/0xe0 [sunrpc]
[ 72.556276] nfsd4_process_cb_update.isra.11+0xb7/0x410 [nfsd]
[ 72.557087] ? update_load_avg+0x82/0x610
[ 72.557652] ? cpuacct_charge+0x60/0x70
[ 72.558212] ? dequeue_entity+0xdb/0x3e0
[ 72.558765] ? queued_spin_unlock+0x9/0x20
[ 72.559358] nfsd4_run_cb_work+0xfc/0x270 [nfsd]
[ 72.560031] process_one_work+0x1df/0x390
[ 72.560600] worker_thread+0x37/0x3b0
[ 72.561644] ? process_one_work+0x390/0x390
[ 72.562247] kthread+0x12f/0x150
[ 72.562710] ? set_kthread_struct+0x50/0x50
[ 72.563309] ret_from_fork+0x22/0x30
[ 72.563818] </TASK>
[ 72.564189] ---[ end trace 031117b1c72ec616 ]---
[ 72.566019] list_add corruption. next->prev should be prev (ffff89ac4977e538), but was ffff89ac4763e018. (next=ffff89ac4763e018).
[ 72.567647] ------------[ cut here ]------------
|
18 Sep 2025
|
|
|
CVE-2023-53418
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: lpc32xx_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
|
18 Sep 2025
|
|
|
CVE-2023-53417
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
USB: sl811: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
|
18 Sep 2025
|
|
|
CVE-2023-53416
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
USB: isp1362: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
|
18 Sep 2025
|
|
|
CVE-2023-53415
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
USB: dwc3: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
Note, the root dentry for the debugfs directory for the device needs to
be saved so we don't have to keep looking it up, which required a bit
more refactoring to properly create and remove it when needed.
|
18 Sep 2025
|
|
|
CVE-2023-53414
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
scsi: snic: Fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic at
once.
|
18 Sep 2025
|
|
|
CVE-2023-53413
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
USB: isp116x: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
|
18 Sep 2025
|
|
|
CVE-2023-53412
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: bcm63xx_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
|
18 Sep 2025
|
|
|
CVE-2023-53411
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
PM: EM: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
|
18 Sep 2025
|
|
|
CVE-2023-53410
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
USB: ULPI: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
|
18 Sep 2025
|
|
|
CVE-2023-53409
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
drivers: base: component: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
|
18 Sep 2025
|
|
|
CVE-2023-53408
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
trace/blktrace: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
|
18 Sep 2025
|
|
|
CVE-2023-53407
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: pxa27x_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
|
18 Sep 2025
|
|
|
CVE-2023-53406
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: pxa25x_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
|
18 Sep 2025
|
|
|
CVE-2023-53405
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: gr_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
|
18 Sep 2025
|
|
|
CVE-2023-53404
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
USB: fotg210: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
|
18 Sep 2025
|
|
|
CVE-2023-53403
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
time/debug: Fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic at
once.
|
18 Sep 2025
|
|
|
CVE-2023-53402
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
kernel/printk/index.c: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
|
18 Sep 2025
|
|
|
CVE-2022-50400
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
staging: greybus: audio_helper: remove unused and wrong debugfs usage
In the greybus audio_helper code, the debugfs file for the dapm has the
potential to be removed and memory will be leaked. There is also the
very real potential for this code to remove ALL debugfs entries from the
system, and it seems like this is what will really happen if this code
ever runs. This all is very wrong as the greybus audio driver did not
create this debugfs file, the sound core did and controls the lifespan
of it.
So remove all of the debugfs logic from the audio_helper code as there's
no way it could be correct. If this really is needed, it can come back
with a fixup for the incorrect usage of the debugfs_lookup() call which
is what caused this to be noticed at all.
|
18 Sep 2025
|
|
|
CVE-2023-53401
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
mm: kmem: fix a NULL pointer dereference in obj_stock_flush_required()
KCSAN found an issue in obj_stock_flush_required():
stock->cached_objcg can be reset between the check and dereference:
==================================================================
BUG: KCSAN: data-race in drain_all_stock / drain_obj_stock
write to 0xffff888237c2a2f8 of 8 bytes by task 19625 on cpu 0:
drain_obj_stock+0x408/0x4e0 mm/memcontrol.c:3306
refill_obj_stock+0x9c/0x1e0 mm/memcontrol.c:3340
obj_cgroup_uncharge+0xe/0x10 mm/memcontrol.c:3408
memcg_slab_free_hook mm/slab.h:587 [inline]
__cache_free mm/slab.c:3373 [inline]
__do_kmem_cache_free mm/slab.c:3577 [inline]
kmem_cache_free+0x105/0x280 mm/slab.c:3602
__d_free fs/dcache.c:298 [inline]
dentry_free fs/dcache.c:375 [inline]
__dentry_kill+0x422/0x4a0 fs/dcache.c:621
dentry_kill+0x8d/0x1e0
dput+0x118/0x1f0 fs/dcache.c:913
__fput+0x3bf/0x570 fs/file_table.c:329
____fput+0x15/0x20 fs/file_table.c:349
task_work_run+0x123/0x160 kernel/task_work.c:179
resume_user_mode_work include/linux/resume_user_mode.h:49 [inline]
exit_to_user_mode_loop+0xcf/0xe0 kernel/entry/common.c:171
exit_to_user_mode_prepare+0x6a/0xa0 kernel/entry/common.c:203
__syscall_exit_to_user_mode_work kernel/entry/common.c:285 [inline]
syscall_exit_to_user_mode+0x26/0x140 kernel/entry/common.c:296
do_syscall_64+0x4d/0xc0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x63/0xcd
read to 0xffff888237c2a2f8 of 8 bytes by task 19632 on cpu 1:
obj_stock_flush_required mm/memcontrol.c:3319 [inline]
drain_all_stock+0x174/0x2a0 mm/memcontrol.c:2361
try_charge_memcg+0x6d0/0xd10 mm/memcontrol.c:2703
try_charge mm/memcontrol.c:2837 [inline]
mem_cgroup_charge_skmem+0x51/0x140 mm/memcontrol.c:7290
sock_reserve_memory+0xb1/0x390 net/core/sock.c:1025
sk_setsockopt+0x800/0x1e70 net/core/sock.c:1525
udp_lib_setsockopt+0x99/0x6c0 net/ipv4/udp.c:2692
udp_setsockopt+0x73/0xa0 net/ipv4/udp.c:2817
sock_common_setsockopt+0x61/0x70 net/core/sock.c:3668
__sys_setsockopt+0x1c3/0x230 net/socket.c:2271
__do_sys_setsockopt net/socket.c:2282 [inline]
__se_sys_setsockopt net/socket.c:2279 [inline]
__x64_sys_setsockopt+0x66/0x80 net/socket.c:2279
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0xffff8881382d52c0 -> 0xffff888138893740
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 19632 Comm: syz-executor.0 Not tainted 6.3.0-rc2-syzkaller-00387-g534293368afa #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/02/2023
Fix it by using READ_ONCE()/WRITE_ONCE() for all accesses to
stock->cached_objcg.
|
18 Sep 2025
|
|
|
CVE-2023-53400
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: Fix Oops by 9.1 surround channel names
get_line_out_pfx() may trigger an Oops by overflowing the static array
with more than 8 channels. This was reported for MacBookPro 12,1 with
Cirrus codec.
As a workaround, extend for the 9.1 channels and also fix the
potential Oops by unifying the code paths accessing the same array
with the proper size check.
|
18 Sep 2025
|
CVE-2022-50406
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
iomap: iomap: fix memory corruption when recording errors during writeback
Every now and then I see this crash on arm64:
Unable to handle kernel NULL pointer dereference at virtual address 00000000000000f8
Buffer I/O error on dev dm-0, logical block 8733687, async page read
Mem abort info:
ESR = 0x0000000096000006
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x06: level 2 translation fault
Data abort info:
ISV = 0, ISS = 0x00000006
CM = 0, WnR = 0
user pgtable: 64k pages, 42-bit VAs, pgdp=0000000139750000
[00000000000000f8] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000, pmd=0000000000000000
Internal error: Oops: 96000006 [#1] PREEMPT SMP
Buffer I/O error on dev dm-0, logical block 8733688, async page read
Dumping ftrace buffer:
Buffer I/O error on dev dm-0, logical block 8733689, async page read
(ftrace buffer empty)
XFS (dm-0): log I/O error -5
Modules linked in: dm_thin_pool dm_persistent_data
XFS (dm-0): Metadata I/O Error (0x1) detected at xfs_trans_read_buf_map+0x1ec/0x590 [xfs] (fs/xfs/xfs_trans_buf.c:296).
dm_bio_prison
XFS (dm-0): Please unmount the filesystem and rectify the problem(s)
XFS (dm-0): xfs_imap_lookup: xfs_ialloc_read_agi() returned error -5, agno 0
dm_bufio dm_log_writes xfs nft_chain_nat xt_REDIRECT nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip6t_REJECT
potentially unexpected fatal signal 6.
nf_reject_ipv6
potentially unexpected fatal signal 6.
ipt_REJECT nf_reject_ipv4
CPU: 1 PID: 122166 Comm: fsstress Tainted: G W 6.0.0-rc5-djwa #rc5 3004c9f1de887ebae86015f2677638ce51ee7
rpcsec_gss_krb5 auth_rpcgss xt_tcpudp ip_set_hash_ip ip_set_hash_net xt_set nft_compat ip_set_hash_mac ip_set nf_tables
Hardware name: QEMU KVM Virtual Machine, BIOS 1.5.1 06/16/2021
pstate: 60001000 (nZCv daif -PAN -UAO -TCO -DIT +SSBS BTYPE=--)
ip_tables
pc : 000003fd6d7df200
x_tables
lr : 000003fd6d7df1ec
overlay nfsv4
CPU: 0 PID: 54031 Comm: u4:3 Tainted: G W 6.0.0-rc5-djwa #rc5 3004c9f1de887ebae86015f2677638ce51ee7405
Hardware name: QEMU KVM Virtual Machine, BIOS 1.5.1 06/16/2021
Workqueue: writeback wb_workfn
sp : 000003ffd9522fd0
(flush-253:0)
pstate: 60401005 (nZCv daif +PAN -UAO -TCO -DIT +SSBS BTYPE=--)
pc : errseq_set+0x1c/0x100
x29: 000003ffd9522fd0 x28: 0000000000000023 x27: 000002acefeb6780
x26: 0000000000000005 x25: 0000000000000001 x24: 0000000000000000
x23: 00000000ffffffff x22: 0000000000000005
lr : __filemap_set_wb_err+0x24/0xe0
x21: 0000000000000006
sp : fffffe000f80f760
x29: fffffe000f80f760 x28: 0000000000000003 x27: fffffe000f80f9f8
x26: 0000000002523000 x25: 00000000fffffffb x24: fffffe000f80f868
x23: fffffe000f80fbb0 x22: fffffc0180c26a78 x21: 0000000002530000
x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
x14: 0000000000000001 x13: 0000000000470af3 x12: fffffc0058f70000
x11: 0000000000000040 x10: 0000000000001b20 x9 : fffffe000836b288
x8 : fffffc00eb9fd480 x7 : 0000000000f83659 x6 : 0000000000000000
x5 : 0000000000000869 x4 : 0000000000000005 x3 : 00000000000000f8
x20: 000003fd6d740020 x19: 000000000001dd36 x18: 0000000000000001
x17: 000003fd6d78704c x16: 0000000000000001 x15: 000002acfac87668
x2 : 0000000000000ffa x1 : 00000000fffffffb x0 : 00000000000000f8
Call trace:
errseq_set+0x1c/0x100
__filemap_set_wb_err+0x24/0xe0
iomap_do_writepage+0x5e4/0xd5c
write_cache_pages+0x208/0x674
iomap_writepages+0x34/0x60
xfs_vm_writepages+0x8c/0xcc [xfs 7a861f39c43631f15d3a5884246ba5035d4ca78b]
x14: 0000000000000000 x13: 2064656e72757465 x12: 0000000000002180
x11: 000003fd6d8a82d0 x10: 0000000000000000 x9 : 000003fd6d8ae288
x8 : 0000000000000083 x7 : 00000000ffffffff x6 : 00000000ffffffee
x5 : 00000000fbad2887 x4 : 000003fd6d9abb58 x3 : 000003fd6d740020
x2 : 0000000000000006 x1 : 000000000001dd36 x0 : 0000000000000000
CPU:
---truncated---
CVE-2022-50405
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
net/tunnel: wait until all sk_user_data reader finish before releasing the sock
There is a race condition in vxlan that when deleting a vxlan device
during receiving packets, there is a possibility that the sock is
released after getting vxlan_sock vs from sk_user_data. Then in
later vxlan_ecn_decapsulate(), vxlan_get_sk_family() we will got
NULL pointer dereference. e.g.
#0 [ffffa25ec6978a38] machine_kexec at ffffffff8c669757
#1 [ffffa25ec6978a90] __crash_kexec at ffffffff8c7c0a4d
#2 [ffffa25ec6978b58] crash_kexec at ffffffff8c7c1c48
#3 [ffffa25ec6978b60] oops_end at ffffffff8c627f2b
#4 [ffffa25ec6978b80] page_fault_oops at ffffffff8c678fcb
#5 [ffffa25ec6978bd8] exc_page_fault at ffffffff8d109542
#6 [ffffa25ec6978c00] asm_exc_page_fault at ffffffff8d200b62
[exception RIP: vxlan_ecn_decapsulate+0x3b]
RIP: ffffffffc1014e7b RSP: ffffa25ec6978cb0 RFLAGS: 00010246
RAX: 0000000000000008 RBX: ffff8aa000888000 RCX: 0000000000000000
RDX: 000000000000000e RSI: ffff8a9fc7ab803e RDI: ffff8a9fd1168700
RBP: ffff8a9fc7ab803e R8: 0000000000700000 R9: 00000000000010ae
R10: ffff8a9fcb748980 R11: 0000000000000000 R12: ffff8a9fd1168700
R13: ffff8aa000888000 R14: 00000000002a0000 R15: 00000000000010ae
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
#7 [ffffa25ec6978ce8] vxlan_rcv at ffffffffc10189cd [vxlan]
#8 [ffffa25ec6978d90] udp_queue_rcv_one_skb at ffffffff8cfb6507
#9 [ffffa25ec6978dc0] udp_unicast_rcv_skb at ffffffff8cfb6e45
#10 [ffffa25ec6978dc8] __udp4_lib_rcv at ffffffff8cfb8807
#11 [ffffa25ec6978e20] ip_protocol_deliver_rcu at ffffffff8cf76951
#12 [ffffa25ec6978e48] ip_local_deliver at ffffffff8cf76bde
#13 [ffffa25ec6978ea0] __netif_receive_skb_one_core at ffffffff8cecde9b
#14 [ffffa25ec6978ec8] process_backlog at ffffffff8cece139
#15 [ffffa25ec6978f00] __napi_poll at ffffffff8ceced1a
#16 [ffffa25ec6978f28] net_rx_action at ffffffff8cecf1f3
#17 [ffffa25ec6978fa0] __softirqentry_text_start at ffffffff8d4000ca
#18 [ffffa25ec6978ff0] do_softirq at ffffffff8c6fbdc3
Reproducer: https://github.com/Mellanox/ovs-tests/blob/master/test-ovs-vxlan-remove-tunnel-during-traffic.sh
Fix this by waiting for all sk_user_data reader to finish before
releasing the sock.
CVE-2022-50404
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
fbdev: fbcon: release buffer when fbcon_do_set_font() failed
syzbot is reporting memory leak at fbcon_do_set_font() [1], for
commit a5a923038d70 ("fbdev: fbcon: Properly revert changes when
vc_resize() failed") missed that the buffer might be newly allocated
by fbcon_set_font().
CVE-2022-50402
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
drivers/md/md-bitmap: check the return value of md_bitmap_get_counter()
Check the return value of md_bitmap_get_counter() in case it returns
NULL pointer, which will result in a null pointer dereference.
v2: update the check to include other dereference
CVE-2022-50401
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
nfsd: under NFSv4.1, fix double svc_xprt_put on rpc_create failure
On error situation `clp->cl_cb_conn.cb_xprt` should not be given
a reference to the xprt otherwise both client cleanup and the
error handling path of the caller call to put it. Better to
delay handing over the reference to a later branch.
[ 72.530665] refcount_t: underflow; use-after-free.
[ 72.531933] WARNING: CPU: 0 PID: 173 at lib/refcount.c:28 refcount_warn_saturate+0xcf/0x120
[ 72.533075] Modules linked in: nfsd(OE) nfsv4(OE) nfsv3(OE) nfs(OE) lockd(OE) compat_nfs_ssc(OE) nfs_acl(OE) rpcsec_gss_krb5(OE) auth_rpcgss(OE) rpcrdma(OE) dns_resolver fscache netfs grace rdma_cm iw_cm ib_cm sunrpc(OE) mlx5_ib mlx5_core mlxfw pci_hyperv_intf ib_uverbs ib_core xt_MASQUERADE nf_conntrack_netlink nft_counter xt_addrtype nft_compat br_netfilter bridge stp llc nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set overlay nf_tables nfnetlink crct10dif_pclmul crc32_pclmul ghash_clmulni_intel xfs serio_raw virtio_net virtio_blk net_failover failover fuse [last unloaded: sunrpc]
[ 72.540389] CPU: 0 PID: 173 Comm: kworker/u16:5 Tainted: G OE 5.15.82-dan #1
[ 72.541511] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.16.0-3.module+el8.7.0+1084+97b81f61 04/01/2014
[ 72.542717] Workqueue: nfsd4_callbacks nfsd4_run_cb_work [nfsd]
[ 72.543575] RIP: 0010:refcount_warn_saturate+0xcf/0x120
[ 72.544299] Code: 55 00 0f 0b 5d e9 01 50 98 00 80 3d 75 9e 39 08 00 0f 85 74 ff ff ff 48 c7 c7 e8 d1 60 8e c6 05 61 9e 39 08 01 e8 f6 51 55 00 <0f> 0b 5d e9 d9 4f 98 00 80 3d 4b 9e 39 08 00 0f 85 4c ff ff ff 48
[ 72.546666] RSP: 0018:ffffb3f841157cf0 EFLAGS: 00010286
[ 72.547393] RAX: 0000000000000026 RBX: ffff89ac6231d478 RCX: 0000000000000000
[ 72.548324] RDX: ffff89adb7c2c2c0 RSI: ffff89adb7c205c0 RDI: ffff89adb7c205c0
[ 72.549271] RBP: ffffb3f841157cf0 R08: 0000000000000000 R09: c0000000ffefffff
[ 72.550209] R10: 0000000000000001 R11: ffffb3f841157ad0 R12: ffff89ac6231d180
[ 72.551142] R13: ffff89ac6231d478 R14: ffff89ac40c06180 R15: ffff89ac6231d4b0
[ 72.552089] FS: 0000000000000000(0000) GS:ffff89adb7c00000(0000) knlGS:0000000000000000
[ 72.553175] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 72.553934] CR2: 0000563a310506a8 CR3: 0000000109a66000 CR4: 0000000000350ef0
[ 72.554874] Call Trace:
[ 72.555278] <TASK>
[ 72.555614] svc_xprt_put+0xaf/0xe0 [sunrpc]
[ 72.556276] nfsd4_process_cb_update.isra.11+0xb7/0x410 [nfsd]
[ 72.557087] ? update_load_avg+0x82/0x610
[ 72.557652] ? cpuacct_charge+0x60/0x70
[ 72.558212] ? dequeue_entity+0xdb/0x3e0
[ 72.558765] ? queued_spin_unlock+0x9/0x20
[ 72.559358] nfsd4_run_cb_work+0xfc/0x270 [nfsd]
[ 72.560031] process_one_work+0x1df/0x390
[ 72.560600] worker_thread+0x37/0x3b0
[ 72.561644] ? process_one_work+0x390/0x390
[ 72.562247] kthread+0x12f/0x150
[ 72.562710] ? set_kthread_struct+0x50/0x50
[ 72.563309] ret_from_fork+0x22/0x30
[ 72.563818] </TASK>
[ 72.564189] ---[ end trace 031117b1c72ec616 ]---
[ 72.566019] list_add corruption. next->prev should be prev (ffff89ac4977e538), but was ffff89ac4763e018. (next=ffff89ac4763e018).
[ 72.567647] ------------[ cut here ]------------
CVE-2023-53418
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: lpc32xx_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
CVE-2023-53417
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
USB: sl811: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
CVE-2023-53416
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
USB: isp1362: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
CVE-2023-53415
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
USB: dwc3: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
Note, the root dentry for the debugfs directory for the device needs to
be saved so we don't have to keep looking it up, which required a bit
more refactoring to properly create and remove it when needed.
CVE-2023-53414
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
scsi: snic: Fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic at
once.
CVE-2023-53413
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
USB: isp116x: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
CVE-2023-53412
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: bcm63xx_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
CVE-2023-53411
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
PM: EM: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
CVE-2023-53410
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
USB: ULPI: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
CVE-2023-53409
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
drivers: base: component: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
CVE-2023-53408
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
trace/blktrace: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
CVE-2023-53407
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: pxa27x_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
CVE-2023-53406
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: pxa25x_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
CVE-2023-53405
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: gr_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
CVE-2023-53404
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
USB: fotg210: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
CVE-2023-53403
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
time/debug: Fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic at
once.
CVE-2023-53402
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
kernel/printk/index.c: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
CVE-2022-50400
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
staging: greybus: audio_helper: remove unused and wrong debugfs usage
In the greybus audio_helper code, the debugfs file for the dapm has the
potential to be removed and memory will be leaked. There is also the
very real potential for this code to remove ALL debugfs entries from the
system, and it seems like this is what will really happen if this code
ever runs. This all is very wrong as the greybus audio driver did not
create this debugfs file, the sound core did and controls the lifespan
of it.
So remove all of the debugfs logic from the audio_helper code as there's
no way it could be correct. If this really is needed, it can come back
with a fixup for the incorrect usage of the debugfs_lookup() call which
is what caused this to be noticed at all.
CVE-2023-53401
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
mm: kmem: fix a NULL pointer dereference in obj_stock_flush_required()
KCSAN found an issue in obj_stock_flush_required():
stock->cached_objcg can be reset between the check and dereference:
==================================================================
BUG: KCSAN: data-race in drain_all_stock / drain_obj_stock
write to 0xffff888237c2a2f8 of 8 bytes by task 19625 on cpu 0:
drain_obj_stock+0x408/0x4e0 mm/memcontrol.c:3306
refill_obj_stock+0x9c/0x1e0 mm/memcontrol.c:3340
obj_cgroup_uncharge+0xe/0x10 mm/memcontrol.c:3408
memcg_slab_free_hook mm/slab.h:587 [inline]
__cache_free mm/slab.c:3373 [inline]
__do_kmem_cache_free mm/slab.c:3577 [inline]
kmem_cache_free+0x105/0x280 mm/slab.c:3602
__d_free fs/dcache.c:298 [inline]
dentry_free fs/dcache.c:375 [inline]
__dentry_kill+0x422/0x4a0 fs/dcache.c:621
dentry_kill+0x8d/0x1e0
dput+0x118/0x1f0 fs/dcache.c:913
__fput+0x3bf/0x570 fs/file_table.c:329
____fput+0x15/0x20 fs/file_table.c:349
task_work_run+0x123/0x160 kernel/task_work.c:179
resume_user_mode_work include/linux/resume_user_mode.h:49 [inline]
exit_to_user_mode_loop+0xcf/0xe0 kernel/entry/common.c:171
exit_to_user_mode_prepare+0x6a/0xa0 kernel/entry/common.c:203
__syscall_exit_to_user_mode_work kernel/entry/common.c:285 [inline]
syscall_exit_to_user_mode+0x26/0x140 kernel/entry/common.c:296
do_syscall_64+0x4d/0xc0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x63/0xcd
read to 0xffff888237c2a2f8 of 8 bytes by task 19632 on cpu 1:
obj_stock_flush_required mm/memcontrol.c:3319 [inline]
drain_all_stock+0x174/0x2a0 mm/memcontrol.c:2361
try_charge_memcg+0x6d0/0xd10 mm/memcontrol.c:2703
try_charge mm/memcontrol.c:2837 [inline]
mem_cgroup_charge_skmem+0x51/0x140 mm/memcontrol.c:7290
sock_reserve_memory+0xb1/0x390 net/core/sock.c:1025
sk_setsockopt+0x800/0x1e70 net/core/sock.c:1525
udp_lib_setsockopt+0x99/0x6c0 net/ipv4/udp.c:2692
udp_setsockopt+0x73/0xa0 net/ipv4/udp.c:2817
sock_common_setsockopt+0x61/0x70 net/core/sock.c:3668
__sys_setsockopt+0x1c3/0x230 net/socket.c:2271
__do_sys_setsockopt net/socket.c:2282 [inline]
__se_sys_setsockopt net/socket.c:2279 [inline]
__x64_sys_setsockopt+0x66/0x80 net/socket.c:2279
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0xffff8881382d52c0 -> 0xffff888138893740
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 19632 Comm: syz-executor.0 Not tainted 6.3.0-rc2-syzkaller-00387-g534293368afa #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/02/2023
Fix it by using READ_ONCE()/WRITE_ONCE() for all accesses to
stock->cached_objcg.
CVE-2023-53400
N/A
18 Sep 2025
In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: Fix Oops by 9.1 surround channel names
get_line_out_pfx() may trigger an Oops by overflowing the static array
with more than 8 channels. This was reported for MacBookPro 12,1 with
Cirrus codec.
As a workaround, extend for the 9.1 channels and also fix the
potential Oops by unifying the code paths accessing the same array
with the proper size check.
Page 190 of 687
Page 190 of 687