Searching...
Please wait while we search the database
| CVE ID | Severity | Description | Published | Actions |
|---|---|---|---|---|
|
CVE-2024-52557
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
drm: zynqmp_dp: Fix integer overflow in zynqmp_dp_rate_get()
This patch fixes a potential integer overflow in the zynqmp_dp_rate_get()
The issue comes up when the expression
drm_dp_bw_code_to_link_rate(dp->test.bw_code) * 10000 is evaluated using 32-bit
Now the constant is a compatible 64-bit type.
Resolves coverity issues: CID 1636340 and CID 1635811
|
27 Feb 2025
|
|
|
CVE-2024-49570
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
drm/xe/tracing: Fix a potential TP_printk UAF
The commit
afd2627f727b ("tracing: Check "%s" dereference via the field and not the TP_printk format")
exposes potential UAFs in the xe_bo_move trace event.
Fix those by avoiding dereferencing the
xe_mem_type_to_name[] array at TP_printk time.
Since some code refactoring has taken place, explicit backporting may
be needed for kernels older than 6.10.
|
27 Feb 2025
|
|
|
CVE-2025-21754
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix assertion failure when splitting ordered extent after transaction abort
If while we are doing a direct IO write a transaction abort happens, we
mark all existing ordered extents with the BTRFS_ORDERED_IOERR flag (done
at btrfs_destroy_ordered_extents()), and then after that if we enter
btrfs_split_ordered_extent() and the ordered extent has bytes left
(meaning we have a bio that doesn't cover the whole ordered extent, see
details at btrfs_extract_ordered_extent()), we will fail on the following
assertion at btrfs_split_ordered_extent():
ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
because the BTRFS_ORDERED_IOERR flag is set and the definition of
BTRFS_ORDERED_TYPE_FLAGS is just the union of all flags that identify the
type of write (regular, nocow, prealloc, compressed, direct IO, encoded).
Fix this by returning an error from btrfs_extract_ordered_extent() if we
find the BTRFS_ORDERED_IOERR flag in the ordered extent. The error will
be the error that resulted in the transaction abort or -EIO if no
transaction abort happened.
This was recently reported by syzbot with the following trace:
FAULT_INJECTION: forcing a failure.
name failslab, interval 1, probability 0, space 0, times 1
CPU: 0 UID: 0 PID: 5321 Comm: syz.0.0 Not tainted 6.13.0-rc5-syzkaller #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
fail_dump lib/fault-inject.c:53 [inline]
should_fail_ex+0x3b0/0x4e0 lib/fault-inject.c:154
should_failslab+0xac/0x100 mm/failslab.c:46
slab_pre_alloc_hook mm/slub.c:4072 [inline]
slab_alloc_node mm/slub.c:4148 [inline]
__do_kmalloc_node mm/slub.c:4297 [inline]
__kmalloc_noprof+0xdd/0x4c0 mm/slub.c:4310
kmalloc_noprof include/linux/slab.h:905 [inline]
kzalloc_noprof include/linux/slab.h:1037 [inline]
btrfs_chunk_alloc_add_chunk_item+0x244/0x1100 fs/btrfs/volumes.c:5742
reserve_chunk_space+0x1ca/0x2c0 fs/btrfs/block-group.c:4292
check_system_chunk fs/btrfs/block-group.c:4319 [inline]
do_chunk_alloc fs/btrfs/block-group.c:3891 [inline]
btrfs_chunk_alloc+0x77b/0xf80 fs/btrfs/block-group.c:4187
find_free_extent_update_loop fs/btrfs/extent-tree.c:4166 [inline]
find_free_extent+0x42d1/0x5810 fs/btrfs/extent-tree.c:4579
btrfs_reserve_extent+0x422/0x810 fs/btrfs/extent-tree.c:4672
btrfs_new_extent_direct fs/btrfs/direct-io.c:186 [inline]
btrfs_get_blocks_direct_write+0x706/0xfa0 fs/btrfs/direct-io.c:321
btrfs_dio_iomap_begin+0xbb7/0x1180 fs/btrfs/direct-io.c:525
iomap_iter+0x697/0xf60 fs/iomap/iter.c:90
__iomap_dio_rw+0xeb9/0x25b0 fs/iomap/direct-io.c:702
btrfs_dio_write fs/btrfs/direct-io.c:775 [inline]
btrfs_direct_write+0x610/0xa30 fs/btrfs/direct-io.c:880
btrfs_do_write_iter+0x2a0/0x760 fs/btrfs/file.c:1397
do_iter_readv_writev+0x600/0x880
vfs_writev+0x376/0xba0 fs/read_write.c:1050
do_pwritev fs/read_write.c:1146 [inline]
__do_sys_pwritev2 fs/read_write.c:1204 [inline]
__se_sys_pwritev2+0x196/0x2b0 fs/read_write.c:1195
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f1281f85d29
RSP: 002b:00007f12819fe038 EFLAGS: 00000246 ORIG_RAX: 0000000000000148
RAX: ffffffffffffffda RBX: 00007f1282176080 RCX: 00007f1281f85d29
RDX: 0000000000000001 RSI: 0000000020000240 RDI: 0000000000000005
RBP: 00007f12819fe090 R08: 0000000000000000 R09: 0000000000000003
R10: 0000000000007000 R11: 0000000000000246 R12: 0000000000000002
R13: 0000000000000000 R14: 00007f1282176080 R15: 00007ffcb9e23328
</TASK>
BTRFS error (device loop0 state A): Transaction aborted (error -12)
BTRFS: error (device loop0 state A
---truncated---
|
27 Feb 2025
|
|
|
CVE-2025-21753
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix use-after-free when attempting to join an aborted transaction
When we are trying to join the current transaction and if it's aborted,
we read its 'aborted' field after unlocking fs_info->trans_lock and
without holding any extra reference count on it. This means that a
concurrent task that is aborting the transaction may free the transaction
before we read its 'aborted' field, leading to a use-after-free.
Fix this by reading the 'aborted' field while holding fs_info->trans_lock
since any freeing task must first acquire that lock and set
fs_info->running_transaction to NULL before freeing the transaction.
This was reported by syzbot and Dmitry with the following stack traces
from KASAN:
==================================================================
BUG: KASAN: slab-use-after-free in join_transaction+0xd9b/0xda0 fs/btrfs/transaction.c:278
Read of size 4 at addr ffff888011839024 by task kworker/u4:9/1128
CPU: 0 UID: 0 PID: 1128 Comm: kworker/u4:9 Not tainted 6.13.0-rc7-syzkaller-00019-gc45323b7560e #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Workqueue: events_unbound btrfs_async_reclaim_data_space
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
join_transaction+0xd9b/0xda0 fs/btrfs/transaction.c:278
start_transaction+0xaf8/0x1670 fs/btrfs/transaction.c:697
flush_space+0x448/0xcf0 fs/btrfs/space-info.c:803
btrfs_async_reclaim_data_space+0x159/0x510 fs/btrfs/space-info.c:1321
process_one_work kernel/workqueue.c:3236 [inline]
process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3317
worker_thread+0x870/0xd30 kernel/workqueue.c:3398
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Allocated by task 5315:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x243/0x390 mm/slub.c:4329
kmalloc_noprof include/linux/slab.h:901 [inline]
join_transaction+0x144/0xda0 fs/btrfs/transaction.c:308
start_transaction+0xaf8/0x1670 fs/btrfs/transaction.c:697
btrfs_create_common+0x1b2/0x2e0 fs/btrfs/inode.c:6572
lookup_open fs/namei.c:3649 [inline]
open_last_lookups fs/namei.c:3748 [inline]
path_openat+0x1c03/0x3590 fs/namei.c:3984
do_filp_open+0x27f/0x4e0 fs/namei.c:4014
do_sys_openat2+0x13e/0x1d0 fs/open.c:1402
do_sys_open fs/open.c:1417 [inline]
__do_sys_creat fs/open.c:1495 [inline]
__se_sys_creat fs/open.c:1489 [inline]
__x64_sys_creat+0x123/0x170 fs/open.c:1489
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 5336:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x59/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2353 [inline]
slab_free mm/slub.c:4613 [inline]
kfree+0x196/0x430 mm/slub.c:4761
cleanup_transaction fs/btrfs/transaction.c:2063 [inline]
btrfs_commit_transaction+0x2c97/0x3720 fs/btrfs/transaction.c:2598
insert_balance_item+0x1284/0x20b0 fs/btrfs/volumes.c:3757
btrfs_balance+0x992/
---truncated---
|
27 Feb 2025
|
|
|
CVE-2025-21752
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: don't use btrfs_set_item_key_safe on RAID stripe-extents
Don't use btrfs_set_item_key_safe() to modify the keys in the RAID
stripe-tree, as this can lead to corruption of the tree, which is caught
by the checks in btrfs_set_item_key_safe():
BTRFS info (device nvme1n1): leaf 49168384 gen 15 total ptrs 194 free space 8329 owner 12
BTRFS info (device nvme1n1): refs 2 lock_owner 1030 current 1030
[ snip ]
item 105 key (354549760 230 20480) itemoff 14587 itemsize 16
stride 0 devid 5 physical 67502080
item 106 key (354631680 230 4096) itemoff 14571 itemsize 16
stride 0 devid 1 physical 88559616
item 107 key (354631680 230 32768) itemoff 14555 itemsize 16
stride 0 devid 1 physical 88555520
item 108 key (354717696 230 28672) itemoff 14539 itemsize 16
stride 0 devid 2 physical 67604480
[ snip ]
BTRFS critical (device nvme1n1): slot 106 key (354631680 230 32768) new key (354635776 230 4096)
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.c:2602!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 1 UID: 0 PID: 1055 Comm: fsstress Not tainted 6.13.0-rc1+ #1464
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014
RIP: 0010:btrfs_set_item_key_safe+0xf7/0x270
Code: <snip>
RSP: 0018:ffffc90001337ab0 EFLAGS: 00010287
RAX: 0000000000000000 RBX: ffff8881115fd000 RCX: 0000000000000000
RDX: 0000000000000001 RSI: 0000000000000001 RDI: 00000000ffffffff
RBP: ffff888110ed6f50 R08: 00000000ffffefff R09: ffffffff8244c500
R10: 00000000ffffefff R11: 00000000ffffffff R12: ffff888100586000
R13: 00000000000000c9 R14: ffffc90001337b1f R15: ffff888110f23b58
FS: 00007f7d75c72740(0000) GS:ffff88813bd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa811652c60 CR3: 0000000111398001 CR4: 0000000000370eb0
Call Trace:
<TASK>
? __die_body.cold+0x14/0x1a
? die+0x2e/0x50
? do_trap+0xca/0x110
? do_error_trap+0x65/0x80
? btrfs_set_item_key_safe+0xf7/0x270
? exc_invalid_op+0x50/0x70
? btrfs_set_item_key_safe+0xf7/0x270
? asm_exc_invalid_op+0x1a/0x20
? btrfs_set_item_key_safe+0xf7/0x270
btrfs_partially_delete_raid_extent+0xc4/0xe0
btrfs_delete_raid_extent+0x227/0x240
__btrfs_free_extent.isra.0+0x57f/0x9c0
? exc_coproc_segment_overrun+0x40/0x40
__btrfs_run_delayed_refs+0x2fa/0xe80
btrfs_run_delayed_refs+0x81/0xe0
btrfs_commit_transaction+0x2dd/0xbe0
? preempt_count_add+0x52/0xb0
btrfs_sync_file+0x375/0x4c0
do_fsync+0x39/0x70
__x64_sys_fsync+0x13/0x20
do_syscall_64+0x54/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f7d7550ef90
Code: <snip>
RSP: 002b:00007ffd70237248 EFLAGS: 00000202 ORIG_RAX: 000000000000004a
RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007f7d7550ef90
RDX: 000000000000013a RSI: 000000000040eb28 RDI: 0000000000000004
RBP: 000000000000001b R08: 0000000000000078 R09: 00007ffd7023725c
R10: 00007f7d75400390 R11: 0000000000000202 R12: 028f5c28f5c28f5c
R13: 8f5c28f5c28f5c29 R14: 000000000040b520 R15: 00007f7d75c726c8
</TASK>
While the root cause of the tree order corruption isn't clear, using
btrfs_duplicate_item() to copy the item and then adjusting both the key
and the per-device physical addresses is a safe way to counter this
problem.
|
27 Feb 2025
|
|
|
CVE-2025-21751
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: HWS, change error flow on matcher disconnect
Currently, when firmware failure occurs during matcher disconnect flow,
the error flow of the function reconnects the matcher back and returns
an error, which continues running the calling function and eventually
frees the matcher that is being disconnected.
This leads to a case where we have a freed matcher on the matchers list,
which in turn leads to use-after-free and eventual crash.
This patch fixes that by not trying to reconnect the matcher back when
some FW command fails during disconnect.
Note that we're dealing here with FW error. We can't overcome this
problem. This might lead to bad steering state (e.g. wrong connection
between matchers), and will also lead to resource leakage, as it is
the case with any other error handling during resource destruction.
However, the goal here is to allow the driver to continue and not crash
the machine with use-after-free error.
|
27 Feb 2025
|
|
|
CVE-2025-21750
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Check the return value of of_property_read_string_index()
Somewhen between 6.10 and 6.11 the driver started to crash on my
MacBookPro14,3. The property doesn't exist and 'tmp' remains
uninitialized, so we pass a random pointer to devm_kstrdup().
The crash I am getting looks like this:
BUG: unable to handle page fault for address: 00007f033c669379
PF: supervisor read access in kernel mode
PF: error_code(0x0001) - permissions violation
PGD 8000000101341067 P4D 8000000101341067 PUD 101340067 PMD 1013bb067 PTE 800000010aee9025
Oops: Oops: 0001 [#1] SMP PTI
CPU: 4 UID: 0 PID: 827 Comm: (udev-worker) Not tainted 6.11.8-gentoo #1
Hardware name: Apple Inc. MacBookPro14,3/Mac-551B86E5744E2388, BIOS 529.140.2.0.0 06/23/2024
RIP: 0010:strlen+0x4/0x30
Code: f7 75 ec 31 c0 c3 cc cc cc cc 48 89 f8 c3 cc cc cc cc 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa <80> 3f 00 74 14 48 89 f8 48 83 c0 01 80 38 00 75 f7 48 29 f8 c3 cc
RSP: 0018:ffffb4aac0683ad8 EFLAGS: 00010202
RAX: 00000000ffffffea RBX: 00007f033c669379 RCX: 0000000000000001
RDX: 0000000000000cc0 RSI: 00007f033c669379 RDI: 00007f033c669379
RBP: 00000000ffffffea R08: 0000000000000000 R09: 00000000c0ba916a
R10: ffffffffffffffff R11: ffffffffb61ea260 R12: ffff91f7815b50c8
R13: 0000000000000cc0 R14: ffff91fafefffe30 R15: ffffb4aac0683b30
FS: 00007f033ccbe8c0(0000) GS:ffff91faeed00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f033c669379 CR3: 0000000107b1e004 CR4: 00000000003706f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? __die+0x23/0x70
? page_fault_oops+0x149/0x4c0
? raw_spin_rq_lock_nested+0xe/0x20
? sched_balance_newidle+0x22b/0x3c0
? update_load_avg+0x78/0x770
? exc_page_fault+0x6f/0x150
? asm_exc_page_fault+0x26/0x30
? __pfx_pci_conf1_write+0x10/0x10
? strlen+0x4/0x30
devm_kstrdup+0x25/0x70
brcmf_of_probe+0x273/0x350 [brcmfmac]
|
27 Feb 2025
|
|
|
CVE-2025-21749
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
net: rose: lock the socket in rose_bind()
syzbot reported a soft lockup in rose_loopback_timer(),
with a repro calling bind() from multiple threads.
rose_bind() must lock the socket to avoid this issue.
|
27 Feb 2025
|
|
|
CVE-2025-21748
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix integer overflows on 32 bit systems
On 32bit systems the addition operations in ipc_msg_alloc() can
potentially overflow leading to memory corruption.
Add bounds checking using KSMBD_IPC_MAX_PAYLOAD to avoid overflow.
|
27 Feb 2025
|
|
|
CVE-2025-21747
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
drm/ast: astdp: Fix timeout for enabling video signal
The ASTDP transmitter sometimes takes up to 1 second for enabling the
video signal, while the timeout is only 200 msec. This results in a
kernel error message. Increase the timeout to 1 second. An example
of the error message is shown below.
[ 697.084433] ------------[ cut here ]------------
[ 697.091115] ast 0000:02:00.0: [drm] drm_WARN_ON(!__ast_dp_wait_enable(ast, enabled))
[ 697.091233] WARNING: CPU: 1 PID: 160 at drivers/gpu/drm/ast/ast_dp.c:232 ast_dp_set_enable+0x123/0x140 [ast]
[...]
[ 697.272469] RIP: 0010:ast_dp_set_enable+0x123/0x140 [ast]
[...]
[ 697.415283] Call Trace:
[ 697.420727] <TASK>
[ 697.425908] ? show_trace_log_lvl+0x196/0x2c0
[ 697.433304] ? show_trace_log_lvl+0x196/0x2c0
[ 697.440693] ? drm_atomic_helper_commit_modeset_enables+0x30a/0x470
[ 697.450115] ? ast_dp_set_enable+0x123/0x140 [ast]
[ 697.458059] ? __warn.cold+0xaf/0xca
[ 697.464713] ? ast_dp_set_enable+0x123/0x140 [ast]
[ 697.472633] ? report_bug+0x134/0x1d0
[ 697.479544] ? handle_bug+0x58/0x90
[ 697.486127] ? exc_invalid_op+0x13/0x40
[ 697.492975] ? asm_exc_invalid_op+0x16/0x20
[ 697.500224] ? preempt_count_sub+0x14/0xc0
[ 697.507473] ? ast_dp_set_enable+0x123/0x140 [ast]
[ 697.515377] ? ast_dp_set_enable+0x123/0x140 [ast]
[ 697.523227] drm_atomic_helper_commit_modeset_enables+0x30a/0x470
[ 697.532388] drm_atomic_helper_commit_tail+0x58/0x90
[ 697.540400] ast_mode_config_helper_atomic_commit_tail+0x30/0x40 [ast]
[ 697.550009] commit_tail+0xfe/0x1d0
[ 697.556547] drm_atomic_helper_commit+0x198/0x1c0
This is a cosmetical problem. Enabling the video signal still works
even with the error message. The problem has always been present, but
only recent versions of the ast driver warn about missing the timeout.
|
27 Feb 2025
|
|
|
CVE-2025-21746
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
Input: synaptics - fix crash when enabling pass-through port
When enabling a pass-through port an interrupt might come before psmouse
driver binds to the pass-through port. However synaptics sub-driver
tries to access psmouse instance presumably associated with the
pass-through port to figure out if only 1 byte of response or entire
protocol packet needs to be forwarded to the pass-through port and may
crash if psmouse instance has not been attached to the port yet.
Fix the crash by introducing open() and close() methods for the port and
check if the port is open before trying to access psmouse instance.
Because psmouse calls serio_open() only after attaching psmouse instance
to serio port instance this prevents the potential crash.
|
27 Feb 2025
|
|
|
CVE-2025-21745
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
blk-cgroup: Fix class @block_class's subsystem refcount leakage
blkcg_fill_root_iostats() iterates over @block_class's devices by
class_dev_iter_(init|next)(), but does not end iterating with
class_dev_iter_exit(), so causes the class's subsystem refcount leakage.
Fix by ending the iterating with class_dev_iter_exit().
|
27 Feb 2025
|
|
|
CVE-2025-21744
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: fix NULL pointer dereference in brcmf_txfinalize()
On removal of the device or unloading of the kernel module a potential NULL
pointer dereference occurs.
The following sequence deletes the interface:
brcmf_detach()
brcmf_remove_interface()
brcmf_del_if()
Inside the brcmf_del_if() function the drvr->if2bss[ifidx] is updated to
BRCMF_BSSIDX_INVALID (-1) if the bsscfgidx matches.
After brcmf_remove_interface() call the brcmf_proto_detach() function is
called providing the following sequence:
brcmf_detach()
brcmf_proto_detach()
brcmf_proto_msgbuf_detach()
brcmf_flowring_detach()
brcmf_msgbuf_delete_flowring()
brcmf_msgbuf_remove_flowring()
brcmf_flowring_delete()
brcmf_get_ifp()
brcmf_txfinalize()
Since brcmf_get_ip() can and actually will return NULL in this case the
call to brcmf_txfinalize() will result in a NULL pointer dereference inside
brcmf_txfinalize() when trying to update ifp->ndev->stats.tx_errors.
This will only happen if a flowring still has an skb.
Although the NULL pointer dereference has only been seen when trying to
update the tx statistic, all other uses of the ifp pointer have been
guarded as well with an early return if ifp is NULL.
|
27 Feb 2025
|
|
|
CVE-2025-21743
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
usbnet: ipheth: fix possible overflow in DPE length check
Originally, it was possible for the DPE length check to overflow if
wDatagramIndex + wDatagramLength > U16_MAX. This could lead to an OoB
read.
Move the wDatagramIndex term to the other side of the inequality.
An existing condition ensures that wDatagramIndex < urb->actual_length.
|
27 Feb 2025
|
|
|
CVE-2025-21742
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
usbnet: ipheth: use static NDP16 location in URB
Original code allowed for the start of NDP16 to be anywhere within the
URB based on the `wNdpIndex` value in NTH16. Only the start position of
NDP16 was checked, so it was possible for even the fixed-length part
of NDP16 to extend past the end of URB, leading to an out-of-bounds
read.
On iOS devices, the NDP16 header always directly follows NTH16. Rely on
and check for this specific format.
This, along with NCM-specific minimal URB length check that already
exists, will ensure that the fixed-length part of NDP16 plus a set
amount of DPEs fit within the URB.
Note that this commit alone does not fully address the OoB read.
The limit on the amount of DPEs needs to be enforced separately.
|
27 Feb 2025
|
|
|
CVE-2025-21741
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
usbnet: ipheth: fix DPE OoB read
Fix an out-of-bounds DPE read, limit the number of processed DPEs to
the amount that fits into the fixed-size NDP16 header.
|
27 Feb 2025
|
|
|
CVE-2025-21740
|
N/A |
27 Feb 2025
|
||
|
CVE-2025-21739
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: core: Fix use-after free in init error and remove paths
devm_blk_crypto_profile_init() registers a cleanup handler to run when
the associated (platform-) device is being released. For UFS, the
crypto private data and pointers are stored as part of the ufs_hba's
data structure 'struct ufs_hba::crypto_profile'. This structure is
allocated as part of the underlying ufshcd and therefore Scsi_host
allocation.
During driver release or during error handling in ufshcd_pltfrm_init(),
this structure is released as part of ufshcd_dealloc_host() before the
(platform-) device associated with the crypto call above is released.
Once this device is released, the crypto cleanup code will run, using
the just-released 'struct ufs_hba::crypto_profile'. This causes a
use-after-free situation:
Call trace:
kfree+0x60/0x2d8 (P)
kvfree+0x44/0x60
blk_crypto_profile_destroy_callback+0x28/0x70
devm_action_release+0x1c/0x30
release_nodes+0x6c/0x108
devres_release_all+0x98/0x100
device_unbind_cleanup+0x20/0x70
really_probe+0x218/0x2d0
In other words, the initialisation code flow is:
platform-device probe
ufshcd_pltfrm_init()
ufshcd_alloc_host()
scsi_host_alloc()
allocation of struct ufs_hba
creation of scsi-host devices
devm_blk_crypto_profile_init()
devm registration of cleanup handler using platform-device
and during error handling of ufshcd_pltfrm_init() or during driver
removal:
ufshcd_dealloc_host()
scsi_host_put()
put_device(scsi-host)
release of struct ufs_hba
put_device(platform-device)
crypto cleanup handler
To fix this use-after free, change ufshcd_alloc_host() to register a
devres action to automatically cleanup the underlying SCSI device on
ufshcd destruction, without requiring explicit calls to
ufshcd_dealloc_host(). This way:
* the crypto profile and all other ufs_hba-owned resources are
destroyed before SCSI (as they've been registered after)
* a memleak is plugged in tc-dwc-g210-pci.c remove() as a
side-effect
* EXPORT_SYMBOL_GPL(ufshcd_dealloc_host) can be removed fully as
it's not needed anymore
* no future drivers using ufshcd_alloc_host() could ever forget
adding the cleanup
|
27 Feb 2025
|
|
|
CVE-2025-21738
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
ata: libata-sff: Ensure that we cannot write outside the allocated buffer
reveliofuzzing reported that a SCSI_IOCTL_SEND_COMMAND ioctl with out_len
set to 0xd42, SCSI command set to ATA_16 PASS-THROUGH, ATA command set to
ATA_NOP, and protocol set to ATA_PROT_PIO, can cause ata_pio_sector() to
write outside the allocated buffer, overwriting random memory.
While a ATA device is supposed to abort a ATA_NOP command, there does seem
to be a bug either in libata-sff or QEMU, where either this status is not
set, or the status is cleared before read by ata_sff_hsm_move().
Anyway, that is most likely a separate bug.
Looking at __atapi_pio_bytes(), it already has a safety check to ensure
that __atapi_pio_bytes() cannot write outside the allocated buffer.
Add a similar check to ata_pio_sector(), such that also ata_pio_sector()
cannot write outside the allocated buffer.
|
27 Feb 2025
|
|
|
CVE-2025-21737
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
ceph: fix memory leak in ceph_mds_auth_match()
We now free the temporary target path substring allocation on every
possible branch, instead of omitting the default branch. In some
cases, a memory leak occured, which could rapidly crash the system
(depending on how many file accesses were attempted).
This was detected in production because it caused a continuous memory
growth, eventually triggering kernel OOM and completely hard-locking
the kernel.
Relevant kmemleak stacktrace:
unreferenced object 0xffff888131e69900 (size 128):
comm "git", pid 66104, jiffies 4295435999
hex dump (first 32 bytes):
76 6f 6c 75 6d 65 73 2f 63 6f 6e 74 61 69 6e 65 volumes/containe
72 73 2f 67 69 74 65 61 2f 67 69 74 65 61 2f 67 rs/gitea/gitea/g
backtrace (crc 2f3bb450):
[<ffffffffaa68fb49>] __kmalloc_noprof+0x359/0x510
[<ffffffffc32bf1df>] ceph_mds_check_access+0x5bf/0x14e0 [ceph]
[<ffffffffc3235722>] ceph_open+0x312/0xd80 [ceph]
[<ffffffffaa7dd786>] do_dentry_open+0x456/0x1120
[<ffffffffaa7e3729>] vfs_open+0x79/0x360
[<ffffffffaa832875>] path_openat+0x1de5/0x4390
[<ffffffffaa834fcc>] do_filp_open+0x19c/0x3c0
[<ffffffffaa7e44a1>] do_sys_openat2+0x141/0x180
[<ffffffffaa7e4945>] __x64_sys_open+0xe5/0x1a0
[<ffffffffac2cc2f7>] do_syscall_64+0xb7/0x210
[<ffffffffac400130>] entry_SYSCALL_64_after_hwframe+0x77/0x7f
It can be triggered by mouting a subdirectory of a CephFS filesystem,
and then trying to access files on this subdirectory with an auth token
using a path-scoped capability:
$ ceph auth get client.services
[client.services]
key = REDACTED
caps mds = "allow rw fsname=cephfs path=/volumes/"
caps mon = "allow r fsname=cephfs"
caps osd = "allow rw tag cephfs data=cephfs"
$ cat /proc/self/mounts
services@[REDACTED].cephfs=/volumes/containers /ceph/containers ceph rw,noatime,name=services,secret=<hidden>,ms_mode=prefer-crc,mount_timeout=300,acl,mon_addr=[REDACTED]:3300,recover_session=clean 0 0
$ seq 1 1000000 | xargs -P32 --replace={} touch /ceph/containers/file-{} && \
seq 1 1000000 | xargs -P32 --replace={} cat /ceph/containers/file-{}
[ idryomov: combine if statements, rename rc to path_matched and make
it a bool, formatting ]
|
27 Feb 2025
|
|
|
CVE-2025-21736
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix possible int overflows in nilfs_fiemap()
Since nilfs_bmap_lookup_contig() in nilfs_fiemap() calculates its result
by being prepared to go through potentially maxblocks == INT_MAX blocks,
the value in n may experience an overflow caused by left shift of blkbits.
While it is extremely unlikely to occur, play it safe and cast right hand
expression to wider type to mitigate the issue.
Found by Linux Verification Center (linuxtesting.org) with static analysis
tool SVACE.
|
27 Feb 2025
|
|
|
CVE-2025-21735
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
NFC: nci: Add bounds checking in nci_hci_create_pipe()
The "pipe" variable is a u8 which comes from the network. If it's more
than 127, then it results in memory corruption in the caller,
nci_hci_connect_gate().
|
27 Feb 2025
|
|
|
CVE-2025-21734
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
misc: fastrpc: Fix copy buffer page size
For non-registered buffer, fastrpc driver copies the buffer and
pass it to the remote subsystem. There is a problem with current
implementation of page size calculation which is not considering
the offset in the calculation. This might lead to passing of
improper and out-of-bounds page size which could result in
memory issue. Calculate page start and page end using the offset
adjusted address instead of absolute address.
|
27 Feb 2025
|
|
|
CVE-2025-21733
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
tracing/osnoise: Fix resetting of tracepoints
If a timerlat tracer is started with the osnoise option OSNOISE_WORKLOAD
disabled, but then that option is enabled and timerlat is removed, the
tracepoints that were enabled on timerlat registration do not get
disabled. If the option is disabled again and timelat is started, then it
triggers a warning in the tracepoint code due to registering the
tracepoint again without ever disabling it.
Do not use the same user space defined options to know to disable the
tracepoints when timerlat is removed. Instead, set a global flag when it
is enabled and use that flag to know to disable the events.
~# echo NO_OSNOISE_WORKLOAD > /sys/kernel/tracing/osnoise/options
~# echo timerlat > /sys/kernel/tracing/current_tracer
~# echo OSNOISE_WORKLOAD > /sys/kernel/tracing/osnoise/options
~# echo nop > /sys/kernel/tracing/current_tracer
~# echo NO_OSNOISE_WORKLOAD > /sys/kernel/tracing/osnoise/options
~# echo timerlat > /sys/kernel/tracing/current_tracer
Triggers:
------------[ cut here ]------------
WARNING: CPU: 6 PID: 1337 at kernel/tracepoint.c:294 tracepoint_add_func+0x3b6/0x3f0
Modules linked in:
CPU: 6 UID: 0 PID: 1337 Comm: rtla Not tainted 6.13.0-rc4-test-00018-ga867c441128e-dirty #73
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:tracepoint_add_func+0x3b6/0x3f0
Code: 48 8b 53 28 48 8b 73 20 4c 89 04 24 e8 23 59 11 00 4c 8b 04 24 e9 36 fe ff ff 0f 0b b8 ea ff ff ff 45 84 e4 0f 84 68 fe ff ff <0f> 0b e9 61 fe ff ff 48 8b 7b 18 48 85 ff 0f 84 4f ff ff ff 49 8b
RSP: 0018:ffffb9b003a87ca0 EFLAGS: 00010202
RAX: 00000000ffffffef RBX: ffffffff92f30860 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff9bf59e91ccd0 RDI: ffffffff913b6410
RBP: 000000000000000a R08: 00000000000005c7 R09: 0000000000000002
R10: ffffb9b003a87ce0 R11: 0000000000000002 R12: 0000000000000001
R13: ffffb9b003a87ce0 R14: ffffffffffffffef R15: 0000000000000008
FS: 00007fce81209240(0000) GS:ffff9bf6fdd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055e99b728000 CR3: 00000001277c0002 CR4: 0000000000172ef0
Call Trace:
<TASK>
? __warn.cold+0xb7/0x14d
? tracepoint_add_func+0x3b6/0x3f0
? report_bug+0xea/0x170
? handle_bug+0x58/0x90
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? __pfx_trace_sched_migrate_callback+0x10/0x10
? tracepoint_add_func+0x3b6/0x3f0
? __pfx_trace_sched_migrate_callback+0x10/0x10
? __pfx_trace_sched_migrate_callback+0x10/0x10
tracepoint_probe_register+0x78/0xb0
? __pfx_trace_sched_migrate_callback+0x10/0x10
osnoise_workload_start+0x2b5/0x370
timerlat_tracer_init+0x76/0x1b0
tracing_set_tracer+0x244/0x400
tracing_set_trace_write+0xa0/0xe0
vfs_write+0xfc/0x570
? do_sys_openat2+0x9c/0xe0
ksys_write+0x72/0xf0
do_syscall_64+0x79/0x1c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
|
27 Feb 2025
|
|
|
CVE-2025-21732
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix a race for an ODP MR which leads to CQE with error
This patch addresses a race condition for an ODP MR that can result in a
CQE with an error on the UMR QP.
During the __mlx5_ib_dereg_mr() flow, the following sequence of calls
occurs:
mlx5_revoke_mr()
mlx5r_umr_revoke_mr()
mlx5r_umr_post_send_wait()
At this point, the lkey is freed from the hardware's perspective.
However, concurrently, mlx5_ib_invalidate_range() might be triggered by
another task attempting to invalidate a range for the same freed lkey.
This task will:
- Acquire the umem_odp->umem_mutex lock.
- Call mlx5r_umr_update_xlt() on the UMR QP.
- Since the lkey has already been freed, this can lead to a CQE error,
causing the UMR QP to enter an error state [1].
To resolve this race condition, the umem_odp->umem_mutex lock is now also
acquired as part of the mlx5_revoke_mr() scope. Upon successful revoke,
we set umem_odp->private which points to that MR to NULL, preventing any
further invalidation attempts on its lkey.
[1] From dmesg:
infiniband rocep8s0f0: dump_cqe:277:(pid 0): WC error: 6, Message: memory bind operation error
cqe_dump: 00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
cqe_dump: 00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
cqe_dump: 00000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
cqe_dump: 00000030: 00 00 00 00 08 00 78 06 25 00 11 b9 00 0e dd d2
WARNING: CPU: 15 PID: 1506 at drivers/infiniband/hw/mlx5/umr.c:394 mlx5r_umr_post_send_wait+0x15a/0x2b0 [mlx5_ib]
Modules linked in: ip6table_mangle ip6table_natip6table_filter ip6_tables iptable_mangle xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcgss oid_registry overlay rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_umad ib_ipoib ib_cm mlx5_ib ib_uverbs ib_core fuse mlx5_core
CPU: 15 UID: 0 PID: 1506 Comm: ibv_rc_pingpong Not tainted 6.12.0-rc7+ #1626
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:mlx5r_umr_post_send_wait+0x15a/0x2b0 [mlx5_ib]
[..]
Call Trace:
<TASK>
mlx5r_umr_update_xlt+0x23c/0x3e0 [mlx5_ib]
mlx5_ib_invalidate_range+0x2e1/0x330 [mlx5_ib]
__mmu_notifier_invalidate_range_start+0x1e1/0x240
zap_page_range_single+0xf1/0x1a0
madvise_vma_behavior+0x677/0x6e0
do_madvise+0x1a2/0x4b0
__x64_sys_madvise+0x25/0x30
do_syscall_64+0x6b/0x140
entry_SYSCALL_64_after_hwframe+0x76/0x7e
|
27 Feb 2025
|
CVE-2024-52557
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
drm: zynqmp_dp: Fix integer overflow in zynqmp_dp_rate_get()
This patch fixes a potential integer overflow in the zynqmp_dp_rate_get()
The issue comes up when the expression
drm_dp_bw_code_to_link_rate(dp->test.bw_code) * 10000 is evaluated using 32-bit
Now the constant is a compatible 64-bit type.
Resolves coverity issues: CID 1636340 and CID 1635811
CVE-2024-49570
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
drm/xe/tracing: Fix a potential TP_printk UAF
The commit
afd2627f727b ("tracing: Check "%s" dereference via the field and not the TP_printk format")
exposes potential UAFs in the xe_bo_move trace event.
Fix those by avoiding dereferencing the
xe_mem_type_to_name[] array at TP_printk time.
Since some code refactoring has taken place, explicit backporting may
be needed for kernels older than 6.10.
CVE-2025-21754
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix assertion failure when splitting ordered extent after transaction abort
If while we are doing a direct IO write a transaction abort happens, we
mark all existing ordered extents with the BTRFS_ORDERED_IOERR flag (done
at btrfs_destroy_ordered_extents()), and then after that if we enter
btrfs_split_ordered_extent() and the ordered extent has bytes left
(meaning we have a bio that doesn't cover the whole ordered extent, see
details at btrfs_extract_ordered_extent()), we will fail on the following
assertion at btrfs_split_ordered_extent():
ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
because the BTRFS_ORDERED_IOERR flag is set and the definition of
BTRFS_ORDERED_TYPE_FLAGS is just the union of all flags that identify the
type of write (regular, nocow, prealloc, compressed, direct IO, encoded).
Fix this by returning an error from btrfs_extract_ordered_extent() if we
find the BTRFS_ORDERED_IOERR flag in the ordered extent. The error will
be the error that resulted in the transaction abort or -EIO if no
transaction abort happened.
This was recently reported by syzbot with the following trace:
FAULT_INJECTION: forcing a failure.
name failslab, interval 1, probability 0, space 0, times 1
CPU: 0 UID: 0 PID: 5321 Comm: syz.0.0 Not tainted 6.13.0-rc5-syzkaller #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
fail_dump lib/fault-inject.c:53 [inline]
should_fail_ex+0x3b0/0x4e0 lib/fault-inject.c:154
should_failslab+0xac/0x100 mm/failslab.c:46
slab_pre_alloc_hook mm/slub.c:4072 [inline]
slab_alloc_node mm/slub.c:4148 [inline]
__do_kmalloc_node mm/slub.c:4297 [inline]
__kmalloc_noprof+0xdd/0x4c0 mm/slub.c:4310
kmalloc_noprof include/linux/slab.h:905 [inline]
kzalloc_noprof include/linux/slab.h:1037 [inline]
btrfs_chunk_alloc_add_chunk_item+0x244/0x1100 fs/btrfs/volumes.c:5742
reserve_chunk_space+0x1ca/0x2c0 fs/btrfs/block-group.c:4292
check_system_chunk fs/btrfs/block-group.c:4319 [inline]
do_chunk_alloc fs/btrfs/block-group.c:3891 [inline]
btrfs_chunk_alloc+0x77b/0xf80 fs/btrfs/block-group.c:4187
find_free_extent_update_loop fs/btrfs/extent-tree.c:4166 [inline]
find_free_extent+0x42d1/0x5810 fs/btrfs/extent-tree.c:4579
btrfs_reserve_extent+0x422/0x810 fs/btrfs/extent-tree.c:4672
btrfs_new_extent_direct fs/btrfs/direct-io.c:186 [inline]
btrfs_get_blocks_direct_write+0x706/0xfa0 fs/btrfs/direct-io.c:321
btrfs_dio_iomap_begin+0xbb7/0x1180 fs/btrfs/direct-io.c:525
iomap_iter+0x697/0xf60 fs/iomap/iter.c:90
__iomap_dio_rw+0xeb9/0x25b0 fs/iomap/direct-io.c:702
btrfs_dio_write fs/btrfs/direct-io.c:775 [inline]
btrfs_direct_write+0x610/0xa30 fs/btrfs/direct-io.c:880
btrfs_do_write_iter+0x2a0/0x760 fs/btrfs/file.c:1397
do_iter_readv_writev+0x600/0x880
vfs_writev+0x376/0xba0 fs/read_write.c:1050
do_pwritev fs/read_write.c:1146 [inline]
__do_sys_pwritev2 fs/read_write.c:1204 [inline]
__se_sys_pwritev2+0x196/0x2b0 fs/read_write.c:1195
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f1281f85d29
RSP: 002b:00007f12819fe038 EFLAGS: 00000246 ORIG_RAX: 0000000000000148
RAX: ffffffffffffffda RBX: 00007f1282176080 RCX: 00007f1281f85d29
RDX: 0000000000000001 RSI: 0000000020000240 RDI: 0000000000000005
RBP: 00007f12819fe090 R08: 0000000000000000 R09: 0000000000000003
R10: 0000000000007000 R11: 0000000000000246 R12: 0000000000000002
R13: 0000000000000000 R14: 00007f1282176080 R15: 00007ffcb9e23328
</TASK>
BTRFS error (device loop0 state A): Transaction aborted (error -12)
BTRFS: error (device loop0 state A
---truncated---
CVE-2025-21753
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix use-after-free when attempting to join an aborted transaction
When we are trying to join the current transaction and if it's aborted,
we read its 'aborted' field after unlocking fs_info->trans_lock and
without holding any extra reference count on it. This means that a
concurrent task that is aborting the transaction may free the transaction
before we read its 'aborted' field, leading to a use-after-free.
Fix this by reading the 'aborted' field while holding fs_info->trans_lock
since any freeing task must first acquire that lock and set
fs_info->running_transaction to NULL before freeing the transaction.
This was reported by syzbot and Dmitry with the following stack traces
from KASAN:
==================================================================
BUG: KASAN: slab-use-after-free in join_transaction+0xd9b/0xda0 fs/btrfs/transaction.c:278
Read of size 4 at addr ffff888011839024 by task kworker/u4:9/1128
CPU: 0 UID: 0 PID: 1128 Comm: kworker/u4:9 Not tainted 6.13.0-rc7-syzkaller-00019-gc45323b7560e #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Workqueue: events_unbound btrfs_async_reclaim_data_space
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
join_transaction+0xd9b/0xda0 fs/btrfs/transaction.c:278
start_transaction+0xaf8/0x1670 fs/btrfs/transaction.c:697
flush_space+0x448/0xcf0 fs/btrfs/space-info.c:803
btrfs_async_reclaim_data_space+0x159/0x510 fs/btrfs/space-info.c:1321
process_one_work kernel/workqueue.c:3236 [inline]
process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3317
worker_thread+0x870/0xd30 kernel/workqueue.c:3398
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Allocated by task 5315:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x243/0x390 mm/slub.c:4329
kmalloc_noprof include/linux/slab.h:901 [inline]
join_transaction+0x144/0xda0 fs/btrfs/transaction.c:308
start_transaction+0xaf8/0x1670 fs/btrfs/transaction.c:697
btrfs_create_common+0x1b2/0x2e0 fs/btrfs/inode.c:6572
lookup_open fs/namei.c:3649 [inline]
open_last_lookups fs/namei.c:3748 [inline]
path_openat+0x1c03/0x3590 fs/namei.c:3984
do_filp_open+0x27f/0x4e0 fs/namei.c:4014
do_sys_openat2+0x13e/0x1d0 fs/open.c:1402
do_sys_open fs/open.c:1417 [inline]
__do_sys_creat fs/open.c:1495 [inline]
__se_sys_creat fs/open.c:1489 [inline]
__x64_sys_creat+0x123/0x170 fs/open.c:1489
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 5336:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x59/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2353 [inline]
slab_free mm/slub.c:4613 [inline]
kfree+0x196/0x430 mm/slub.c:4761
cleanup_transaction fs/btrfs/transaction.c:2063 [inline]
btrfs_commit_transaction+0x2c97/0x3720 fs/btrfs/transaction.c:2598
insert_balance_item+0x1284/0x20b0 fs/btrfs/volumes.c:3757
btrfs_balance+0x992/
---truncated---
CVE-2025-21752
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
btrfs: don't use btrfs_set_item_key_safe on RAID stripe-extents
Don't use btrfs_set_item_key_safe() to modify the keys in the RAID
stripe-tree, as this can lead to corruption of the tree, which is caught
by the checks in btrfs_set_item_key_safe():
BTRFS info (device nvme1n1): leaf 49168384 gen 15 total ptrs 194 free space 8329 owner 12
BTRFS info (device nvme1n1): refs 2 lock_owner 1030 current 1030
[ snip ]
item 105 key (354549760 230 20480) itemoff 14587 itemsize 16
stride 0 devid 5 physical 67502080
item 106 key (354631680 230 4096) itemoff 14571 itemsize 16
stride 0 devid 1 physical 88559616
item 107 key (354631680 230 32768) itemoff 14555 itemsize 16
stride 0 devid 1 physical 88555520
item 108 key (354717696 230 28672) itemoff 14539 itemsize 16
stride 0 devid 2 physical 67604480
[ snip ]
BTRFS critical (device nvme1n1): slot 106 key (354631680 230 32768) new key (354635776 230 4096)
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.c:2602!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 1 UID: 0 PID: 1055 Comm: fsstress Not tainted 6.13.0-rc1+ #1464
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014
RIP: 0010:btrfs_set_item_key_safe+0xf7/0x270
Code: <snip>
RSP: 0018:ffffc90001337ab0 EFLAGS: 00010287
RAX: 0000000000000000 RBX: ffff8881115fd000 RCX: 0000000000000000
RDX: 0000000000000001 RSI: 0000000000000001 RDI: 00000000ffffffff
RBP: ffff888110ed6f50 R08: 00000000ffffefff R09: ffffffff8244c500
R10: 00000000ffffefff R11: 00000000ffffffff R12: ffff888100586000
R13: 00000000000000c9 R14: ffffc90001337b1f R15: ffff888110f23b58
FS: 00007f7d75c72740(0000) GS:ffff88813bd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa811652c60 CR3: 0000000111398001 CR4: 0000000000370eb0
Call Trace:
<TASK>
? __die_body.cold+0x14/0x1a
? die+0x2e/0x50
? do_trap+0xca/0x110
? do_error_trap+0x65/0x80
? btrfs_set_item_key_safe+0xf7/0x270
? exc_invalid_op+0x50/0x70
? btrfs_set_item_key_safe+0xf7/0x270
? asm_exc_invalid_op+0x1a/0x20
? btrfs_set_item_key_safe+0xf7/0x270
btrfs_partially_delete_raid_extent+0xc4/0xe0
btrfs_delete_raid_extent+0x227/0x240
__btrfs_free_extent.isra.0+0x57f/0x9c0
? exc_coproc_segment_overrun+0x40/0x40
__btrfs_run_delayed_refs+0x2fa/0xe80
btrfs_run_delayed_refs+0x81/0xe0
btrfs_commit_transaction+0x2dd/0xbe0
? preempt_count_add+0x52/0xb0
btrfs_sync_file+0x375/0x4c0
do_fsync+0x39/0x70
__x64_sys_fsync+0x13/0x20
do_syscall_64+0x54/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f7d7550ef90
Code: <snip>
RSP: 002b:00007ffd70237248 EFLAGS: 00000202 ORIG_RAX: 000000000000004a
RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007f7d7550ef90
RDX: 000000000000013a RSI: 000000000040eb28 RDI: 0000000000000004
RBP: 000000000000001b R08: 0000000000000078 R09: 00007ffd7023725c
R10: 00007f7d75400390 R11: 0000000000000202 R12: 028f5c28f5c28f5c
R13: 8f5c28f5c28f5c29 R14: 000000000040b520 R15: 00007f7d75c726c8
</TASK>
While the root cause of the tree order corruption isn't clear, using
btrfs_duplicate_item() to copy the item and then adjusting both the key
and the per-device physical addresses is a safe way to counter this
problem.
CVE-2025-21751
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: HWS, change error flow on matcher disconnect
Currently, when firmware failure occurs during matcher disconnect flow,
the error flow of the function reconnects the matcher back and returns
an error, which continues running the calling function and eventually
frees the matcher that is being disconnected.
This leads to a case where we have a freed matcher on the matchers list,
which in turn leads to use-after-free and eventual crash.
This patch fixes that by not trying to reconnect the matcher back when
some FW command fails during disconnect.
Note that we're dealing here with FW error. We can't overcome this
problem. This might lead to bad steering state (e.g. wrong connection
between matchers), and will also lead to resource leakage, as it is
the case with any other error handling during resource destruction.
However, the goal here is to allow the driver to continue and not crash
the machine with use-after-free error.
CVE-2025-21750
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Check the return value of of_property_read_string_index()
Somewhen between 6.10 and 6.11 the driver started to crash on my
MacBookPro14,3. The property doesn't exist and 'tmp' remains
uninitialized, so we pass a random pointer to devm_kstrdup().
The crash I am getting looks like this:
BUG: unable to handle page fault for address: 00007f033c669379
PF: supervisor read access in kernel mode
PF: error_code(0x0001) - permissions violation
PGD 8000000101341067 P4D 8000000101341067 PUD 101340067 PMD 1013bb067 PTE 800000010aee9025
Oops: Oops: 0001 [#1] SMP PTI
CPU: 4 UID: 0 PID: 827 Comm: (udev-worker) Not tainted 6.11.8-gentoo #1
Hardware name: Apple Inc. MacBookPro14,3/Mac-551B86E5744E2388, BIOS 529.140.2.0.0 06/23/2024
RIP: 0010:strlen+0x4/0x30
Code: f7 75 ec 31 c0 c3 cc cc cc cc 48 89 f8 c3 cc cc cc cc 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa <80> 3f 00 74 14 48 89 f8 48 83 c0 01 80 38 00 75 f7 48 29 f8 c3 cc
RSP: 0018:ffffb4aac0683ad8 EFLAGS: 00010202
RAX: 00000000ffffffea RBX: 00007f033c669379 RCX: 0000000000000001
RDX: 0000000000000cc0 RSI: 00007f033c669379 RDI: 00007f033c669379
RBP: 00000000ffffffea R08: 0000000000000000 R09: 00000000c0ba916a
R10: ffffffffffffffff R11: ffffffffb61ea260 R12: ffff91f7815b50c8
R13: 0000000000000cc0 R14: ffff91fafefffe30 R15: ffffb4aac0683b30
FS: 00007f033ccbe8c0(0000) GS:ffff91faeed00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f033c669379 CR3: 0000000107b1e004 CR4: 00000000003706f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? __die+0x23/0x70
? page_fault_oops+0x149/0x4c0
? raw_spin_rq_lock_nested+0xe/0x20
? sched_balance_newidle+0x22b/0x3c0
? update_load_avg+0x78/0x770
? exc_page_fault+0x6f/0x150
? asm_exc_page_fault+0x26/0x30
? __pfx_pci_conf1_write+0x10/0x10
? strlen+0x4/0x30
devm_kstrdup+0x25/0x70
brcmf_of_probe+0x273/0x350 [brcmfmac]
CVE-2025-21749
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
net: rose: lock the socket in rose_bind()
syzbot reported a soft lockup in rose_loopback_timer(),
with a repro calling bind() from multiple threads.
rose_bind() must lock the socket to avoid this issue.
CVE-2025-21748
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix integer overflows on 32 bit systems
On 32bit systems the addition operations in ipc_msg_alloc() can
potentially overflow leading to memory corruption.
Add bounds checking using KSMBD_IPC_MAX_PAYLOAD to avoid overflow.
CVE-2025-21747
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
drm/ast: astdp: Fix timeout for enabling video signal
The ASTDP transmitter sometimes takes up to 1 second for enabling the
video signal, while the timeout is only 200 msec. This results in a
kernel error message. Increase the timeout to 1 second. An example
of the error message is shown below.
[ 697.084433] ------------[ cut here ]------------
[ 697.091115] ast 0000:02:00.0: [drm] drm_WARN_ON(!__ast_dp_wait_enable(ast, enabled))
[ 697.091233] WARNING: CPU: 1 PID: 160 at drivers/gpu/drm/ast/ast_dp.c:232 ast_dp_set_enable+0x123/0x140 [ast]
[...]
[ 697.272469] RIP: 0010:ast_dp_set_enable+0x123/0x140 [ast]
[...]
[ 697.415283] Call Trace:
[ 697.420727] <TASK>
[ 697.425908] ? show_trace_log_lvl+0x196/0x2c0
[ 697.433304] ? show_trace_log_lvl+0x196/0x2c0
[ 697.440693] ? drm_atomic_helper_commit_modeset_enables+0x30a/0x470
[ 697.450115] ? ast_dp_set_enable+0x123/0x140 [ast]
[ 697.458059] ? __warn.cold+0xaf/0xca
[ 697.464713] ? ast_dp_set_enable+0x123/0x140 [ast]
[ 697.472633] ? report_bug+0x134/0x1d0
[ 697.479544] ? handle_bug+0x58/0x90
[ 697.486127] ? exc_invalid_op+0x13/0x40
[ 697.492975] ? asm_exc_invalid_op+0x16/0x20
[ 697.500224] ? preempt_count_sub+0x14/0xc0
[ 697.507473] ? ast_dp_set_enable+0x123/0x140 [ast]
[ 697.515377] ? ast_dp_set_enable+0x123/0x140 [ast]
[ 697.523227] drm_atomic_helper_commit_modeset_enables+0x30a/0x470
[ 697.532388] drm_atomic_helper_commit_tail+0x58/0x90
[ 697.540400] ast_mode_config_helper_atomic_commit_tail+0x30/0x40 [ast]
[ 697.550009] commit_tail+0xfe/0x1d0
[ 697.556547] drm_atomic_helper_commit+0x198/0x1c0
This is a cosmetical problem. Enabling the video signal still works
even with the error message. The problem has always been present, but
only recent versions of the ast driver warn about missing the timeout.
CVE-2025-21746
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
Input: synaptics - fix crash when enabling pass-through port
When enabling a pass-through port an interrupt might come before psmouse
driver binds to the pass-through port. However synaptics sub-driver
tries to access psmouse instance presumably associated with the
pass-through port to figure out if only 1 byte of response or entire
protocol packet needs to be forwarded to the pass-through port and may
crash if psmouse instance has not been attached to the port yet.
Fix the crash by introducing open() and close() methods for the port and
check if the port is open before trying to access psmouse instance.
Because psmouse calls serio_open() only after attaching psmouse instance
to serio port instance this prevents the potential crash.
CVE-2025-21745
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
blk-cgroup: Fix class @block_class's subsystem refcount leakage
blkcg_fill_root_iostats() iterates over @block_class's devices by
class_dev_iter_(init|next)(), but does not end iterating with
class_dev_iter_exit(), so causes the class's subsystem refcount leakage.
Fix by ending the iterating with class_dev_iter_exit().
CVE-2025-21744
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: fix NULL pointer dereference in brcmf_txfinalize()
On removal of the device or unloading of the kernel module a potential NULL
pointer dereference occurs.
The following sequence deletes the interface:
brcmf_detach()
brcmf_remove_interface()
brcmf_del_if()
Inside the brcmf_del_if() function the drvr->if2bss[ifidx] is updated to
BRCMF_BSSIDX_INVALID (-1) if the bsscfgidx matches.
After brcmf_remove_interface() call the brcmf_proto_detach() function is
called providing the following sequence:
brcmf_detach()
brcmf_proto_detach()
brcmf_proto_msgbuf_detach()
brcmf_flowring_detach()
brcmf_msgbuf_delete_flowring()
brcmf_msgbuf_remove_flowring()
brcmf_flowring_delete()
brcmf_get_ifp()
brcmf_txfinalize()
Since brcmf_get_ip() can and actually will return NULL in this case the
call to brcmf_txfinalize() will result in a NULL pointer dereference inside
brcmf_txfinalize() when trying to update ifp->ndev->stats.tx_errors.
This will only happen if a flowring still has an skb.
Although the NULL pointer dereference has only been seen when trying to
update the tx statistic, all other uses of the ifp pointer have been
guarded as well with an early return if ifp is NULL.
CVE-2025-21743
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
usbnet: ipheth: fix possible overflow in DPE length check
Originally, it was possible for the DPE length check to overflow if
wDatagramIndex + wDatagramLength > U16_MAX. This could lead to an OoB
read.
Move the wDatagramIndex term to the other side of the inequality.
An existing condition ensures that wDatagramIndex < urb->actual_length.
CVE-2025-21742
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
usbnet: ipheth: use static NDP16 location in URB
Original code allowed for the start of NDP16 to be anywhere within the
URB based on the `wNdpIndex` value in NTH16. Only the start position of
NDP16 was checked, so it was possible for even the fixed-length part
of NDP16 to extend past the end of URB, leading to an out-of-bounds
read.
On iOS devices, the NDP16 header always directly follows NTH16. Rely on
and check for this specific format.
This, along with NCM-specific minimal URB length check that already
exists, will ensure that the fixed-length part of NDP16 plus a set
amount of DPEs fit within the URB.
Note that this commit alone does not fully address the OoB read.
The limit on the amount of DPEs needs to be enforced separately.
CVE-2025-21741
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
usbnet: ipheth: fix DPE OoB read
Fix an out-of-bounds DPE read, limit the number of processed DPEs to
the amount that fits into the fixed-size NDP16 header.
CVE-2025-21740
N/A
27 Feb 2025
CVE-2025-21739
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: core: Fix use-after free in init error and remove paths
devm_blk_crypto_profile_init() registers a cleanup handler to run when
the associated (platform-) device is being released. For UFS, the
crypto private data and pointers are stored as part of the ufs_hba's
data structure 'struct ufs_hba::crypto_profile'. This structure is
allocated as part of the underlying ufshcd and therefore Scsi_host
allocation.
During driver release or during error handling in ufshcd_pltfrm_init(),
this structure is released as part of ufshcd_dealloc_host() before the
(platform-) device associated with the crypto call above is released.
Once this device is released, the crypto cleanup code will run, using
the just-released 'struct ufs_hba::crypto_profile'. This causes a
use-after-free situation:
Call trace:
kfree+0x60/0x2d8 (P)
kvfree+0x44/0x60
blk_crypto_profile_destroy_callback+0x28/0x70
devm_action_release+0x1c/0x30
release_nodes+0x6c/0x108
devres_release_all+0x98/0x100
device_unbind_cleanup+0x20/0x70
really_probe+0x218/0x2d0
In other words, the initialisation code flow is:
platform-device probe
ufshcd_pltfrm_init()
ufshcd_alloc_host()
scsi_host_alloc()
allocation of struct ufs_hba
creation of scsi-host devices
devm_blk_crypto_profile_init()
devm registration of cleanup handler using platform-device
and during error handling of ufshcd_pltfrm_init() or during driver
removal:
ufshcd_dealloc_host()
scsi_host_put()
put_device(scsi-host)
release of struct ufs_hba
put_device(platform-device)
crypto cleanup handler
To fix this use-after free, change ufshcd_alloc_host() to register a
devres action to automatically cleanup the underlying SCSI device on
ufshcd destruction, without requiring explicit calls to
ufshcd_dealloc_host(). This way:
* the crypto profile and all other ufs_hba-owned resources are
destroyed before SCSI (as they've been registered after)
* a memleak is plugged in tc-dwc-g210-pci.c remove() as a
side-effect
* EXPORT_SYMBOL_GPL(ufshcd_dealloc_host) can be removed fully as
it's not needed anymore
* no future drivers using ufshcd_alloc_host() could ever forget
adding the cleanup
CVE-2025-21738
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
ata: libata-sff: Ensure that we cannot write outside the allocated buffer
reveliofuzzing reported that a SCSI_IOCTL_SEND_COMMAND ioctl with out_len
set to 0xd42, SCSI command set to ATA_16 PASS-THROUGH, ATA command set to
ATA_NOP, and protocol set to ATA_PROT_PIO, can cause ata_pio_sector() to
write outside the allocated buffer, overwriting random memory.
While a ATA device is supposed to abort a ATA_NOP command, there does seem
to be a bug either in libata-sff or QEMU, where either this status is not
set, or the status is cleared before read by ata_sff_hsm_move().
Anyway, that is most likely a separate bug.
Looking at __atapi_pio_bytes(), it already has a safety check to ensure
that __atapi_pio_bytes() cannot write outside the allocated buffer.
Add a similar check to ata_pio_sector(), such that also ata_pio_sector()
cannot write outside the allocated buffer.
CVE-2025-21737
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
ceph: fix memory leak in ceph_mds_auth_match()
We now free the temporary target path substring allocation on every
possible branch, instead of omitting the default branch. In some
cases, a memory leak occured, which could rapidly crash the system
(depending on how many file accesses were attempted).
This was detected in production because it caused a continuous memory
growth, eventually triggering kernel OOM and completely hard-locking
the kernel.
Relevant kmemleak stacktrace:
unreferenced object 0xffff888131e69900 (size 128):
comm "git", pid 66104, jiffies 4295435999
hex dump (first 32 bytes):
76 6f 6c 75 6d 65 73 2f 63 6f 6e 74 61 69 6e 65 volumes/containe
72 73 2f 67 69 74 65 61 2f 67 69 74 65 61 2f 67 rs/gitea/gitea/g
backtrace (crc 2f3bb450):
[<ffffffffaa68fb49>] __kmalloc_noprof+0x359/0x510
[<ffffffffc32bf1df>] ceph_mds_check_access+0x5bf/0x14e0 [ceph]
[<ffffffffc3235722>] ceph_open+0x312/0xd80 [ceph]
[<ffffffffaa7dd786>] do_dentry_open+0x456/0x1120
[<ffffffffaa7e3729>] vfs_open+0x79/0x360
[<ffffffffaa832875>] path_openat+0x1de5/0x4390
[<ffffffffaa834fcc>] do_filp_open+0x19c/0x3c0
[<ffffffffaa7e44a1>] do_sys_openat2+0x141/0x180
[<ffffffffaa7e4945>] __x64_sys_open+0xe5/0x1a0
[<ffffffffac2cc2f7>] do_syscall_64+0xb7/0x210
[<ffffffffac400130>] entry_SYSCALL_64_after_hwframe+0x77/0x7f
It can be triggered by mouting a subdirectory of a CephFS filesystem,
and then trying to access files on this subdirectory with an auth token
using a path-scoped capability:
$ ceph auth get client.services
[client.services]
key = REDACTED
caps mds = "allow rw fsname=cephfs path=/volumes/"
caps mon = "allow r fsname=cephfs"
caps osd = "allow rw tag cephfs data=cephfs"
$ cat /proc/self/mounts
services@[REDACTED].cephfs=/volumes/containers /ceph/containers ceph rw,noatime,name=services,secret=<hidden>,ms_mode=prefer-crc,mount_timeout=300,acl,mon_addr=[REDACTED]:3300,recover_session=clean 0 0
$ seq 1 1000000 | xargs -P32 --replace={} touch /ceph/containers/file-{} && \
seq 1 1000000 | xargs -P32 --replace={} cat /ceph/containers/file-{}
[ idryomov: combine if statements, rename rc to path_matched and make
it a bool, formatting ]
CVE-2025-21736
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix possible int overflows in nilfs_fiemap()
Since nilfs_bmap_lookup_contig() in nilfs_fiemap() calculates its result
by being prepared to go through potentially maxblocks == INT_MAX blocks,
the value in n may experience an overflow caused by left shift of blkbits.
While it is extremely unlikely to occur, play it safe and cast right hand
expression to wider type to mitigate the issue.
Found by Linux Verification Center (linuxtesting.org) with static analysis
tool SVACE.
CVE-2025-21735
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
NFC: nci: Add bounds checking in nci_hci_create_pipe()
The "pipe" variable is a u8 which comes from the network. If it's more
than 127, then it results in memory corruption in the caller,
nci_hci_connect_gate().
CVE-2025-21734
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
misc: fastrpc: Fix copy buffer page size
For non-registered buffer, fastrpc driver copies the buffer and
pass it to the remote subsystem. There is a problem with current
implementation of page size calculation which is not considering
the offset in the calculation. This might lead to passing of
improper and out-of-bounds page size which could result in
memory issue. Calculate page start and page end using the offset
adjusted address instead of absolute address.
CVE-2025-21733
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
tracing/osnoise: Fix resetting of tracepoints
If a timerlat tracer is started with the osnoise option OSNOISE_WORKLOAD
disabled, but then that option is enabled and timerlat is removed, the
tracepoints that were enabled on timerlat registration do not get
disabled. If the option is disabled again and timelat is started, then it
triggers a warning in the tracepoint code due to registering the
tracepoint again without ever disabling it.
Do not use the same user space defined options to know to disable the
tracepoints when timerlat is removed. Instead, set a global flag when it
is enabled and use that flag to know to disable the events.
~# echo NO_OSNOISE_WORKLOAD > /sys/kernel/tracing/osnoise/options
~# echo timerlat > /sys/kernel/tracing/current_tracer
~# echo OSNOISE_WORKLOAD > /sys/kernel/tracing/osnoise/options
~# echo nop > /sys/kernel/tracing/current_tracer
~# echo NO_OSNOISE_WORKLOAD > /sys/kernel/tracing/osnoise/options
~# echo timerlat > /sys/kernel/tracing/current_tracer
Triggers:
------------[ cut here ]------------
WARNING: CPU: 6 PID: 1337 at kernel/tracepoint.c:294 tracepoint_add_func+0x3b6/0x3f0
Modules linked in:
CPU: 6 UID: 0 PID: 1337 Comm: rtla Not tainted 6.13.0-rc4-test-00018-ga867c441128e-dirty #73
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:tracepoint_add_func+0x3b6/0x3f0
Code: 48 8b 53 28 48 8b 73 20 4c 89 04 24 e8 23 59 11 00 4c 8b 04 24 e9 36 fe ff ff 0f 0b b8 ea ff ff ff 45 84 e4 0f 84 68 fe ff ff <0f> 0b e9 61 fe ff ff 48 8b 7b 18 48 85 ff 0f 84 4f ff ff ff 49 8b
RSP: 0018:ffffb9b003a87ca0 EFLAGS: 00010202
RAX: 00000000ffffffef RBX: ffffffff92f30860 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff9bf59e91ccd0 RDI: ffffffff913b6410
RBP: 000000000000000a R08: 00000000000005c7 R09: 0000000000000002
R10: ffffb9b003a87ce0 R11: 0000000000000002 R12: 0000000000000001
R13: ffffb9b003a87ce0 R14: ffffffffffffffef R15: 0000000000000008
FS: 00007fce81209240(0000) GS:ffff9bf6fdd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055e99b728000 CR3: 00000001277c0002 CR4: 0000000000172ef0
Call Trace:
<TASK>
? __warn.cold+0xb7/0x14d
? tracepoint_add_func+0x3b6/0x3f0
? report_bug+0xea/0x170
? handle_bug+0x58/0x90
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? __pfx_trace_sched_migrate_callback+0x10/0x10
? tracepoint_add_func+0x3b6/0x3f0
? __pfx_trace_sched_migrate_callback+0x10/0x10
? __pfx_trace_sched_migrate_callback+0x10/0x10
tracepoint_probe_register+0x78/0xb0
? __pfx_trace_sched_migrate_callback+0x10/0x10
osnoise_workload_start+0x2b5/0x370
timerlat_tracer_init+0x76/0x1b0
tracing_set_tracer+0x244/0x400
tracing_set_trace_write+0xa0/0xe0
vfs_write+0xfc/0x570
? do_sys_openat2+0x9c/0xe0
ksys_write+0x72/0xf0
do_syscall_64+0x79/0x1c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
CVE-2025-21732
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix a race for an ODP MR which leads to CQE with error
This patch addresses a race condition for an ODP MR that can result in a
CQE with an error on the UMR QP.
During the __mlx5_ib_dereg_mr() flow, the following sequence of calls
occurs:
mlx5_revoke_mr()
mlx5r_umr_revoke_mr()
mlx5r_umr_post_send_wait()
At this point, the lkey is freed from the hardware's perspective.
However, concurrently, mlx5_ib_invalidate_range() might be triggered by
another task attempting to invalidate a range for the same freed lkey.
This task will:
- Acquire the umem_odp->umem_mutex lock.
- Call mlx5r_umr_update_xlt() on the UMR QP.
- Since the lkey has already been freed, this can lead to a CQE error,
causing the UMR QP to enter an error state [1].
To resolve this race condition, the umem_odp->umem_mutex lock is now also
acquired as part of the mlx5_revoke_mr() scope. Upon successful revoke,
we set umem_odp->private which points to that MR to NULL, preventing any
further invalidation attempts on its lkey.
[1] From dmesg:
infiniband rocep8s0f0: dump_cqe:277:(pid 0): WC error: 6, Message: memory bind operation error
cqe_dump: 00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
cqe_dump: 00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
cqe_dump: 00000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
cqe_dump: 00000030: 00 00 00 00 08 00 78 06 25 00 11 b9 00 0e dd d2
WARNING: CPU: 15 PID: 1506 at drivers/infiniband/hw/mlx5/umr.c:394 mlx5r_umr_post_send_wait+0x15a/0x2b0 [mlx5_ib]
Modules linked in: ip6table_mangle ip6table_natip6table_filter ip6_tables iptable_mangle xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcgss oid_registry overlay rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_umad ib_ipoib ib_cm mlx5_ib ib_uverbs ib_core fuse mlx5_core
CPU: 15 UID: 0 PID: 1506 Comm: ibv_rc_pingpong Not tainted 6.12.0-rc7+ #1626
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:mlx5r_umr_post_send_wait+0x15a/0x2b0 [mlx5_ib]
[..]
Call Trace:
<TASK>
mlx5r_umr_update_xlt+0x23c/0x3e0 [mlx5_ib]
mlx5_ib_invalidate_range+0x2e1/0x330 [mlx5_ib]
__mmu_notifier_invalidate_range_start+0x1e1/0x240
zap_page_range_single+0xf1/0x1a0
madvise_vma_behavior+0x677/0x6e0
do_madvise+0x1a2/0x4b0
__x64_sys_madvise+0x25/0x30
do_syscall_64+0x6b/0x140
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Page 438 of 686
Page 438 of 686