Searching...
Please wait while we search the database
| CVE ID | Severity | Description | Published | Actions |
|---|---|---|---|---|
|
CVE-2024-58012
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: Intel: hda-dai: Ensure DAI widget is valid during params
Each cpu DAI should associate with a widget. However, the topology might
not create the right number of DAI widgets for aggregated amps. And it
will cause NULL pointer deference.
Check that the DAI widget associated with the CPU DAI is valid to prevent
NULL pointer deference due to missing DAI widgets in topologies with
aggregated amps.
|
27 Feb 2025
|
|
|
CVE-2024-58011
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
platform/x86: int3472: Check for adev == NULL
Not all devices have an ACPI companion fwnode, so adev might be NULL. This
can e.g. (theoretically) happen when a user manually binds one of
the int3472 drivers to another i2c/platform device through sysfs.
Add a check for adev not being set and return -ENODEV in that case to
avoid a possible NULL pointer deref in skl_int3472_get_acpi_buffer().
|
27 Feb 2025
|
|
|
CVE-2024-58010
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
binfmt_flat: Fix integer overflow bug on 32 bit systems
Most of these sizes and counts are capped at 256MB so the math doesn't
result in an integer overflow. The "relocs" count needs to be checked
as well. Otherwise on 32bit systems the calculation of "full_data"
could be wrong.
full_data = data_len + relocs * sizeof(unsigned long);
|
27 Feb 2025
|
|
|
CVE-2024-58009
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: handle NULL sock pointer in l2cap_sock_alloc
A NULL sock pointer is passed into l2cap_sock_alloc() when it is called
from l2cap_sock_new_connection_cb() and the error handling paths should
also be aware of it.
Seemingly a more elegant solution would be to swap bt_sock_alloc() and
l2cap_chan_create() calls since they are not interdependent to that moment
but then l2cap_chan_create() adds the soon to be deallocated and still
dummy-initialized channel to the global list accessible by many L2CAP
paths. The channel would be removed from the list in short period of time
but be a bit more straight-forward here and just check for NULL instead of
changing the order of function calls.
Found by Linux Verification Center (linuxtesting.org) with SVACE static
analysis tool.
|
27 Feb 2025
|
|
|
CVE-2024-58008
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
KEYS: trusted: dcp: fix improper sg use with CONFIG_VMAP_STACK=y
With vmalloc stack addresses enabled (CONFIG_VMAP_STACK=y) DCP trusted
keys can crash during en- and decryption of the blob encryption key via
the DCP crypto driver. This is caused by improperly using sg_init_one()
with vmalloc'd stack buffers (plain_key_blob).
Fix this by always using kmalloc() for buffers we give to the DCP crypto
driver.
|
27 Feb 2025
|
|
|
CVE-2024-58007
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
soc: qcom: socinfo: Avoid out of bounds read of serial number
On MSM8916 devices, the serial number exposed in sysfs is constant and does
not change across individual devices. It's always:
db410c:/sys/devices/soc0$ cat serial_number
2644893864
The firmware used on MSM8916 exposes SOCINFO_VERSION(0, 8), which does not
have support for the serial_num field in the socinfo struct. There is an
existing check to avoid exposing the serial number in that case, but it's
not correct: When checking the item_size returned by SMEM, we need to make
sure the *end* of the serial_num is within bounds, instead of comparing
with the *start* offset. The serial_number currently exposed on MSM8916
devices is just an out of bounds read of whatever comes after the socinfo
struct in SMEM.
Fix this by changing offsetof() to offsetofend(), so that the size of the
field is also taken into account.
|
27 Feb 2025
|
|
|
CVE-2024-58006
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
PCI: dwc: ep: Prevent changing BAR size/flags in pci_epc_set_bar()
In commit 4284c88fff0e ("PCI: designware-ep: Allow pci_epc_set_bar() update
inbound map address") set_bar() was modified to support dynamically
changing the backing physical address of a BAR that was already configured.
This means that set_bar() can be called twice, without ever calling
clear_bar() (as calling clear_bar() would clear the BAR's PCI address
assigned by the host).
This can only be done if the new BAR size/flags does not differ from the
existing BAR configuration. Add these missing checks.
If we allow set_bar() to set e.g. a new BAR size that differs from the
existing BAR size, the new address translation range will be smaller than
the BAR size already determined by the host, which would mean that a read
past the new BAR size would pass the iATU untranslated, which could allow
the host to read memory not belonging to the new struct pci_epf_bar.
While at it, add comments which clarifies the support for dynamically
changing the physical address of a BAR. (Which was also missing.)
|
27 Feb 2025
|
|
|
CVE-2024-58005
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
tpm: Change to kvalloc() in eventlog/acpi.c
The following failure was reported on HPE ProLiant D320:
[ 10.693310][ T1] tpm_tis STM0925:00: 2.0 TPM (device-id 0x3, rev-id 0)
[ 10.848132][ T1] ------------[ cut here ]------------
[ 10.853559][ T1] WARNING: CPU: 59 PID: 1 at mm/page_alloc.c:4727 __alloc_pages_noprof+0x2ca/0x330
[ 10.862827][ T1] Modules linked in:
[ 10.866671][ T1] CPU: 59 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.0-lp155.2.g52785e2-default #1 openSUSE Tumbleweed (unreleased) 588cd98293a7c9eba9013378d807364c088c9375
[ 10.882741][ T1] Hardware name: HPE ProLiant DL320 Gen12/ProLiant DL320 Gen12, BIOS 1.20 10/28/2024
[ 10.892170][ T1] RIP: 0010:__alloc_pages_noprof+0x2ca/0x330
[ 10.898103][ T1] Code: 24 08 e9 4a fe ff ff e8 34 36 fa ff e9 88 fe ff ff 83 fe 0a 0f 86 b3 fd ff ff 80 3d 01 e7 ce 01 00 75 09 c6 05 f8 e6 ce 01 01 <0f> 0b 45 31 ff e9 e5 fe ff ff f7 c2 00 00 08 00 75 42 89 d9 80 e1
[ 10.917750][ T1] RSP: 0000:ffffb7cf40077980 EFLAGS: 00010246
[ 10.923777][ T1] RAX: 0000000000000000 RBX: 0000000000040cc0 RCX: 0000000000000000
[ 10.931727][ T1] RDX: 0000000000000000 RSI: 000000000000000c RDI: 0000000000040cc0
The above transcript shows that ACPI pointed a 16 MiB buffer for the log
events because RSI maps to the 'order' parameter of __alloc_pages_noprof().
Address the bug by moving from devm_kmalloc() to devm_add_action() and
kvmalloc() and devm_add_action().
|
27 Feb 2025
|
|
|
CVE-2024-58004
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
media: intel/ipu6: remove cpu latency qos request on error
Fix cpu latency qos list corruption like below. It happens when
we do not remove cpu latency request on error path and free
corresponding memory.
[ 30.634378] l7 kernel: list_add corruption. prev->next should be next (ffffffff9645e960), but was 0000000100100001. (prev=ffff8e9e877e20a8).
[ 30.634388] l7 kernel: WARNING: CPU: 2 PID: 2008 at lib/list_debug.c:32 __list_add_valid_or_report+0x83/0xa0
<snip>
[ 30.634640] l7 kernel: Call Trace:
[ 30.634650] l7 kernel: <TASK>
[ 30.634659] l7 kernel: ? __list_add_valid_or_report+0x83/0xa0
[ 30.634669] l7 kernel: ? __warn.cold+0x93/0xf6
[ 30.634678] l7 kernel: ? __list_add_valid_or_report+0x83/0xa0
[ 30.634690] l7 kernel: ? report_bug+0xff/0x140
[ 30.634702] l7 kernel: ? handle_bug+0x58/0x90
[ 30.634712] l7 kernel: ? exc_invalid_op+0x17/0x70
[ 30.634723] l7 kernel: ? asm_exc_invalid_op+0x1a/0x20
[ 30.634733] l7 kernel: ? __list_add_valid_or_report+0x83/0xa0
[ 30.634742] l7 kernel: plist_add+0xdd/0x140
[ 30.634754] l7 kernel: pm_qos_update_target+0xa0/0x1f0
[ 30.634764] l7 kernel: cpu_latency_qos_update_request+0x61/0xc0
[ 30.634773] l7 kernel: intel_dp_aux_xfer+0x4c7/0x6e0 [i915 1f824655ed04687c2b0d23dbce759fa785f6d033]
|
27 Feb 2025
|
|
|
CVE-2024-58003
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
media: i2c: ds90ub9x3: Fix extra fwnode_handle_put()
The ub913 and ub953 drivers call fwnode_handle_put(priv->sd.fwnode) as
part of their remove process, and if the driver is removed multiple
times, eventually leads to put "overflow", possibly causing memory
corruption or crash.
The fwnode_handle_put() is a leftover from commit 905f88ccebb1 ("media:
i2c: ds90ub9x3: Fix sub-device matching"), which changed the code
related to the sd.fwnode, but missed removing these fwnode_handle_put()
calls.
|
27 Feb 2025
|
|
|
CVE-2024-58002
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
media: uvcvideo: Remove dangling pointers
When an async control is written, we copy a pointer to the file handle
that started the operation. That pointer will be used when the device is
done. Which could be anytime in the future.
If the user closes that file descriptor, its structure will be freed,
and there will be one dangling pointer per pending async control, that
the driver will try to use.
Clean all the dangling pointers during release().
To avoid adding a performance penalty in the most common case (no async
operation), a counter has been introduced with some logic to make sure
that it is properly handled.
|
27 Feb 2025
|
|
|
CVE-2024-58001
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: handle a symlink read error correctly
Patch series "Convert ocfs2 to use folios".
Mark did a conversion of ocfs2 to use folios and sent it to me as a
giant patch for review ;-)
So I've redone it as individual patches, and credited Mark for the patches
where his code is substantially the same. It's not a bad way to do it;
his patch had some bugs and my patches had some bugs. Hopefully all our
bugs were different from each other. And hopefully Mark likes all the
changes I made to his code!
This patch (of 23):
If we can't read the buffer, be sure to unlock the page before returning.
|
27 Feb 2025
|
|
|
CVE-2025-21731
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
nbd: don't allow reconnect after disconnect
Following process can cause nbd_config UAF:
1) grab nbd_config temporarily;
2) nbd_genl_disconnect() flush all recv_work() and release the
initial reference:
nbd_genl_disconnect
nbd_disconnect_and_put
nbd_disconnect
flush_workqueue(nbd->recv_workq)
if (test_and_clear_bit(NBD_RT_HAS_CONFIG_REF, ...))
nbd_config_put
-> due to step 1), reference is still not zero
3) nbd_genl_reconfigure() queue recv_work() again;
nbd_genl_reconfigure
config = nbd_get_config_unlocked(nbd)
if (!config)
-> succeed
if (!test_bit(NBD_RT_BOUND, ...))
-> succeed
nbd_reconnect_socket
queue_work(nbd->recv_workq, &args->work)
4) step 1) release the reference;
5) Finially, recv_work() will trigger UAF:
recv_work
nbd_config_put(nbd)
-> nbd_config is freed
atomic_dec(&config->recv_threads)
-> UAF
Fix the problem by clearing NBD_RT_BOUND in nbd_genl_disconnect(), so
that nbd_genl_reconfigure() will fail.
|
27 Feb 2025
|
|
|
CVE-2025-21730
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: avoid to init mgnt_entry list twice when WoWLAN failed
If WoWLAN failed in resume flow, the rtw89_ops_add_interface() triggered
without removing the interface first. Then the mgnt_entry list init again,
causing the list_empty() check in rtw89_chanctx_ops_assign_vif()
useless, and list_add_tail() again. Therefore, we have added a check to
prevent double adding of the list.
rtw89_8852ce 0000:01:00.0: failed to check wow status disabled
rtw89_8852ce 0000:01:00.0: wow: failed to check disable fw ready
rtw89_8852ce 0000:01:00.0: wow: failed to swap to normal fw
rtw89_8852ce 0000:01:00.0: failed to disable wow
rtw89_8852ce 0000:01:00.0: failed to resume for wow -110
rtw89_8852ce 0000:01:00.0: MAC has already powered on
i2c_hid_acpi i2c-ILTK0001:00: PM: acpi_subsys_resume+0x0/0x60 returned 0 after 284705 usecs
list_add corruption. prev->next should be next (ffff9d9719d82228), but was ffff9d9719f96030. (prev=ffff9d9719f96030).
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:34!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 2 PID: 6918 Comm: kworker/u8:19 Tainted: G U O
Hardware name: Google Anraggar/Anraggar, BIOS Google_Anraggar.15217.514.0 03/25/2024
Workqueue: events_unbound async_run_entry_fn
RIP: 0010:__list_add_valid_or_report+0x9f/0xb0
Code: e8 56 89 ff ff 0f 0b 48 c7 c7 3e fc e0 96 48 89 c6 e8 45 89 ff ...
RSP: 0018:ffffa51b42bbbaf0 EFLAGS: 00010246
RAX: 0000000000000075 RBX: ffff9d9719d82ab0 RCX: 13acb86e047a4400
RDX: 3fffffffffffffff RSI: 0000000000000000 RDI: 00000000ffffdfff
RBP: ffffa51b42bbbb28 R08: ffffffff9768e250 R09: 0000000000001fff
R10: ffffffff9765e250 R11: 0000000000005ffd R12: ffff9d9719f95c40
R13: ffff9d9719f95be8 R14: ffff9d97081bfd78 R15: ffff9d9719d82060
FS: 0000000000000000(0000) GS:ffff9d9a6fb00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007e7d029a4060 CR3: 0000000345e38000 CR4: 0000000000750ee0
PKRU: 55555554
Call Trace:
<TASK>
? __die_body+0x68/0xb0
? die+0xaa/0xd0
? do_trap+0x9f/0x170
? __list_add_valid_or_report+0x9f/0xb0
? __list_add_valid_or_report+0x9f/0xb0
? handle_invalid_op+0x69/0x90
? __list_add_valid_or_report+0x9f/0xb0
? exc_invalid_op+0x3c/0x50
? asm_exc_invalid_op+0x16/0x20
? __list_add_valid_or_report+0x9f/0xb0
rtw89_chanctx_ops_assign_vif+0x1f9/0x210 [rtw89_core cbb375c44bf28564ce479002bff66617a25d9ac1]
? __mutex_unlock_slowpath+0xa0/0xf0
rtw89_ops_assign_vif_chanctx+0x4b/0x90 [rtw89_core cbb375c44bf28564ce479002bff66617a25d9ac1]
drv_assign_vif_chanctx+0xa7/0x1f0 [mac80211 6efaad16237edaaea0868b132d4f93ecf918a8b6]
ieee80211_reconfig+0x9cb/0x17b0 [mac80211 6efaad16237edaaea0868b132d4f93ecf918a8b6]
? __pfx_wiphy_resume+0x10/0x10 [cfg80211 572d03acaaa933fe38251be7fce3b3675284b8ed]
? dev_printk_emit+0x51/0x70
? _dev_info+0x6e/0x90
wiphy_resume+0x89/0x180 [cfg80211 572d03acaaa933fe38251be7fce3b3675284b8ed]
? __pfx_wiphy_resume+0x10/0x10 [cfg80211 572d03acaaa933fe38251be7fce3b3675284b8ed]
dpm_run_callback+0x37/0x1e0
device_resume+0x26d/0x4b0
? __pfx_dpm_watchdog_handler+0x10/0x10
async_resume+0x1d/0x30
async_run_entry_fn+0x29/0xd0
worker_thread+0x397/0x970
kthread+0xed/0x110
? __pfx_worker_thread+0x10/0x10
? __pfx_kthread+0x10/0x10
ret_from_fork+0x38/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
|
27 Feb 2025
|
|
|
CVE-2025-21729
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: fix race between cancel_hw_scan and hw_scan completion
The rtwdev->scanning flag isn't protected by mutex originally, so
cancel_hw_scan can pass the condition, but suddenly hw_scan completion
unset the flag and calls ieee80211_scan_completed() that will free
local->hw_scan_req. Then, cancel_hw_scan raises null-ptr-deref and
use-after-free. Fix it by moving the check condition to where
protected by mutex.
KASAN: null-ptr-deref in range [0x0000000000000088-0x000000000000008f]
CPU: 2 PID: 6922 Comm: kworker/2:2 Tainted: G OE
Hardware name: LENOVO 2356AD1/2356AD1, BIOS G7ETB6WW (2.76 ) 09/10/2019
Workqueue: events cfg80211_conn_work [cfg80211]
RIP: 0010:rtw89_fw_h2c_scan_offload_be+0xc33/0x13c3 [rtw89_core]
Code: 00 45 89 6c 24 1c 0f 85 23 01 00 00 48 8b 85 20 ff ff ff 48 8d
RSP: 0018:ffff88811fd9f068 EFLAGS: 00010206
RAX: dffffc0000000000 RBX: ffff88811fd9f258 RCX: 0000000000000001
RDX: 0000000000000011 RSI: 0000000000000001 RDI: 0000000000000089
RBP: ffff88811fd9f170 R08: 0000000000000000 R09: 0000000000000000
R10: ffff88811fd9f108 R11: 0000000000000000 R12: ffff88810e47f960
R13: 0000000000000000 R14: 000000000000ffff R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff8881d6f00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007531dfca55b0 CR3: 00000001be296004 CR4: 00000000001706e0
Call Trace:
<TASK>
? show_regs+0x61/0x73
? __die_body+0x20/0x73
? die_addr+0x4f/0x7b
? exc_general_protection+0x191/0x1db
? asm_exc_general_protection+0x27/0x30
? rtw89_fw_h2c_scan_offload_be+0xc33/0x13c3 [rtw89_core]
? rtw89_fw_h2c_scan_offload_be+0x458/0x13c3 [rtw89_core]
? __pfx_rtw89_fw_h2c_scan_offload_be+0x10/0x10 [rtw89_core]
? do_raw_spin_lock+0x75/0xdb
? __pfx_do_raw_spin_lock+0x10/0x10
rtw89_hw_scan_offload+0xb5e/0xbf7 [rtw89_core]
? _raw_spin_unlock+0xe/0x24
? __mutex_lock.constprop.0+0x40c/0x471
? __pfx_rtw89_hw_scan_offload+0x10/0x10 [rtw89_core]
? __mutex_lock_slowpath+0x13/0x1f
? mutex_lock+0xa2/0xdc
? __pfx_mutex_lock+0x10/0x10
rtw89_hw_scan_abort+0x58/0xb7 [rtw89_core]
rtw89_ops_cancel_hw_scan+0x120/0x13b [rtw89_core]
ieee80211_scan_cancel+0x468/0x4d0 [mac80211]
ieee80211_prep_connection+0x858/0x899 [mac80211]
ieee80211_mgd_auth+0xbea/0xdde [mac80211]
? __pfx_ieee80211_mgd_auth+0x10/0x10 [mac80211]
? cfg80211_find_elem+0x15/0x29 [cfg80211]
? is_bss+0x1b7/0x1d7 [cfg80211]
ieee80211_auth+0x18/0x27 [mac80211]
cfg80211_mlme_auth+0x3bb/0x3e7 [cfg80211]
cfg80211_conn_do_work+0x410/0xb81 [cfg80211]
? __pfx_cfg80211_conn_do_work+0x10/0x10 [cfg80211]
? __kasan_check_read+0x11/0x1f
? psi_group_change+0x8bc/0x944
? __kasan_check_write+0x14/0x22
? mutex_lock+0x8e/0xdc
? __pfx_mutex_lock+0x10/0x10
? __pfx___radix_tree_lookup+0x10/0x10
cfg80211_conn_work+0x245/0x34d [cfg80211]
? __pfx_cfg80211_conn_work+0x10/0x10 [cfg80211]
? update_cfs_rq_load_avg+0x3bc/0x3d7
? sched_clock_noinstr+0x9/0x1a
? sched_clock+0x10/0x24
? sched_clock_cpu+0x7e/0x42e
? newidle_balance+0x796/0x937
? __pfx_sched_clock_cpu+0x10/0x10
? __pfx_newidle_balance+0x10/0x10
? __kasan_check_read+0x11/0x1f
? psi_group_change+0x8bc/0x944
? _raw_spin_unlock+0xe/0x24
? raw_spin_rq_unlock+0x47/0x54
? raw_spin_rq_unlock_irq+0x9/0x1f
? finish_task_switch.isra.0+0x347/0x586
? __schedule+0x27bf/0x2892
? mutex_unlock+0x80/0xd0
? do_raw_spin_lock+0x75/0xdb
? __pfx___schedule+0x10/0x10
process_scheduled_works+0x58c/0x821
worker_thread+0x4c7/0x586
? __kasan_check_read+0x11/0x1f
kthread+0x285/0x294
? __pfx_worker_thread+0x10/0x10
? __pfx_kthread+0x10/0x10
ret_from_fork+0x29/0x6f
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
|
27 Feb 2025
|
|
|
CVE-2025-21728
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Send signals asynchronously if !preemptible
BPF programs can execute in all kinds of contexts and when a program
running in a non-preemptible context uses the bpf_send_signal() kfunc,
it will cause issues because this kfunc can sleep.
Change `irqs_disabled()` to `!preemptible()`.
|
27 Feb 2025
|
|
|
CVE-2025-21727
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
padata: fix UAF in padata_reorder
A bug was found when run ltp test:
BUG: KASAN: slab-use-after-free in padata_find_next+0x29/0x1a0
Read of size 4 at addr ffff88bbfe003524 by task kworker/u113:2/3039206
CPU: 0 PID: 3039206 Comm: kworker/u113:2 Kdump: loaded Not tainted 6.6.0+
Workqueue: pdecrypt_parallel padata_parallel_worker
Call Trace:
<TASK>
dump_stack_lvl+0x32/0x50
print_address_description.constprop.0+0x6b/0x3d0
print_report+0xdd/0x2c0
kasan_report+0xa5/0xd0
padata_find_next+0x29/0x1a0
padata_reorder+0x131/0x220
padata_parallel_worker+0x3d/0xc0
process_one_work+0x2ec/0x5a0
If 'mdelay(10)' is added before calling 'padata_find_next' in the
'padata_reorder' function, this issue could be reproduced easily with
ltp test (pcrypt_aead01).
This can be explained as bellow:
pcrypt_aead_encrypt
...
padata_do_parallel
refcount_inc(&pd->refcnt); // add refcnt
...
padata_do_serial
padata_reorder // pd
while (1) {
padata_find_next(pd, true); // using pd
queue_work_on
...
padata_serial_worker crypto_del_alg
padata_put_pd_cnt // sub refcnt
padata_free_shell
padata_put_pd(ps->pd);
// pd is freed
// loop again, but pd is freed
// call padata_find_next, UAF
}
In the padata_reorder function, when it loops in 'while', if the alg is
deleted, the refcnt may be decreased to 0 before entering
'padata_find_next', which leads to UAF.
As mentioned in [1], do_serial is supposed to be called with BHs disabled
and always happen under RCU protection, to address this issue, add
synchronize_rcu() in 'padata_free_shell' wait for all _do_serial calls
to finish.
[1] https://lore.kernel.org/all/20221028160401.cccypv4euxikusiq@parnassus.localdomain/
[2] https://lore.kernel.org/linux-kernel/jfjz5d7zwbytztackem7ibzalm5lnxldi2eofeiczqmqs2m7o6@fq426cwnjtkm/
|
27 Feb 2025
|
|
|
CVE-2025-21726
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
padata: avoid UAF for reorder_work
Although the previous patch can avoid ps and ps UAF for _do_serial, it
can not avoid potential UAF issue for reorder_work. This issue can
happen just as below:
crypto_request crypto_request crypto_del_alg
padata_do_serial
...
padata_reorder
// processes all remaining
// requests then breaks
while (1) {
if (!padata)
break;
...
}
padata_do_serial
// new request added
list_add
// sees the new request
queue_work(reorder_work)
padata_reorder
queue_work_on(squeue->work)
...
<kworker context>
padata_serial_worker
// completes new request,
// no more outstanding
// requests
crypto_del_alg
// free pd
<kworker context>
invoke_padata_reorder
// UAF of pd
To avoid UAF for 'reorder_work', get 'pd' ref before put 'reorder_work'
into the 'serial_wq' and put 'pd' ref until the 'serial_wq' finish.
|
27 Feb 2025
|
|
|
CVE-2025-21725
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix oops due to unset link speed
It isn't guaranteed that NETWORK_INTERFACE_INFO::LinkSpeed will always
be set by the server, so the client must handle any values and then
prevent oopses like below from happening:
Oops: divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 0 UID: 0 PID: 1323 Comm: cat Not tainted 6.13.0-rc7 #2
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-3.fc41
04/01/2014
RIP: 0010:cifs_debug_data_proc_show+0xa45/0x1460 [cifs] Code: 00 00 48
89 df e8 3b cd 1b c1 41 f6 44 24 2c 04 0f 84 50 01 00 00 48 89 ef e8
e7 d0 1b c1 49 8b 44 24 18 31 d2 49 8d 7c 24 28 <48> f7 74 24 18 48 89
c3 e8 6e cf 1b c1 41 8b 6c 24 28 49 8d 7c 24
RSP: 0018:ffffc90001817be0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff88811230022c RCX: ffffffffc041bd99
RDX: 0000000000000000 RSI: 0000000000000567 RDI: ffff888112300228
RBP: ffff888112300218 R08: fffff52000302f5f R09: ffffed1022fa58ac
R10: ffff888117d2c566 R11: 00000000fffffffe R12: ffff888112300200
R13: 000000012a15343f R14: 0000000000000001 R15: ffff888113f2db58
FS: 00007fe27119e740(0000) GS:ffff888148600000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fe2633c5000 CR3: 0000000124da0000 CR4: 0000000000750ef0
PKRU: 55555554
Call Trace:
<TASK>
? __die_body.cold+0x19/0x27
? die+0x2e/0x50
? do_trap+0x159/0x1b0
? cifs_debug_data_proc_show+0xa45/0x1460 [cifs]
? do_error_trap+0x90/0x130
? cifs_debug_data_proc_show+0xa45/0x1460 [cifs]
? exc_divide_error+0x39/0x50
? cifs_debug_data_proc_show+0xa45/0x1460 [cifs]
? asm_exc_divide_error+0x1a/0x20
? cifs_debug_data_proc_show+0xa39/0x1460 [cifs]
? cifs_debug_data_proc_show+0xa45/0x1460 [cifs]
? seq_read_iter+0x42e/0x790
seq_read_iter+0x19a/0x790
proc_reg_read_iter+0xbe/0x110
? __pfx_proc_reg_read_iter+0x10/0x10
vfs_read+0x469/0x570
? do_user_addr_fault+0x398/0x760
? __pfx_vfs_read+0x10/0x10
? find_held_lock+0x8a/0xa0
? __pfx_lock_release+0x10/0x10
ksys_read+0xd3/0x170
? __pfx_ksys_read+0x10/0x10
? __rcu_read_unlock+0x50/0x270
? mark_held_locks+0x1a/0x90
do_syscall_64+0xbb/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fe271288911
Code: 00 48 8b 15 01 25 10 00 f7 d8 64 89 02 b8 ff ff ff ff eb bd e8
20 ad 01 00 f3 0f 1e fa 80 3d b5 a7 10 00 00 74 13 31 c0 0f 05 <48> 3d
00 f0 ff ff 77 4f c3 66 0f 1f 44 00 00 55 48 89 e5 48 83 ec
RSP: 002b:00007ffe87c079d8 EFLAGS: 00000246 ORIG_RAX: 0000000000000000
RAX: ffffffffffffffda RBX: 0000000000040000 RCX: 00007fe271288911
RDX: 0000000000040000 RSI: 00007fe2633c6000 RDI: 0000000000000003
RBP: 00007ffe87c07a00 R08: 0000000000000000 R09: 00007fe2713e6380
R10: 0000000000000022 R11: 0000000000000246 R12: 0000000000040000
R13: 00007fe2633c6000 R14: 0000000000000003 R15: 0000000000000000
</TASK>
Fix this by setting cifs_server_iface::speed to a sane value (1Gbps)
by default when link speed is unset.
|
27 Feb 2025
|
|
|
CVE-2025-21724
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
iommufd/iova_bitmap: Fix shift-out-of-bounds in iova_bitmap_offset_to_index()
Resolve a UBSAN shift-out-of-bounds issue in iova_bitmap_offset_to_index()
where shifting the constant "1" (of type int) by bitmap->mapped.pgshift
(an unsigned long value) could result in undefined behavior.
The constant "1" defaults to a 32-bit "int", and when "pgshift" exceeds
31 (e.g., pgshift = 63) the shift operation overflows, as the result
cannot be represented in a 32-bit type.
To resolve this, the constant is updated to "1UL", promoting it to an
unsigned long type to match the operand's type.
|
27 Feb 2025
|
|
|
CVE-2025-21723
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix possible crash when setting up bsg fails
If bsg_setup_queue() fails, the bsg_queue is assigned a non-NULL value.
Consequently, in mpi3mr_bsg_exit(), the condition "if(!mrioc->bsg_queue)"
will not be satisfied, preventing execution from entering
bsg_remove_queue(), which could lead to the following crash:
BUG: kernel NULL pointer dereference, address: 000000000000041c
Call Trace:
<TASK>
mpi3mr_bsg_exit+0x1f/0x50 [mpi3mr]
mpi3mr_remove+0x6f/0x340 [mpi3mr]
pci_device_remove+0x3f/0xb0
device_release_driver_internal+0x19d/0x220
unbind_store+0xa4/0xb0
kernfs_fop_write_iter+0x11f/0x200
vfs_write+0x1fc/0x3e0
ksys_write+0x67/0xe0
do_syscall_64+0x38/0x80
entry_SYSCALL_64_after_hwframe+0x78/0xe2
|
27 Feb 2025
|
|
|
CVE-2025-21722
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: do not force clear folio if buffer is referenced
Patch series "nilfs2: protect busy buffer heads from being force-cleared".
This series fixes the buffer head state inconsistency issues reported by
syzbot that occurs when the filesystem is corrupted and falls back to
read-only, and the associated buffer head use-after-free issue.
This patch (of 2):
Syzbot has reported that after nilfs2 detects filesystem corruption and
falls back to read-only, inconsistencies in the buffer state may occur.
One of the inconsistencies is that when nilfs2 calls mark_buffer_dirty()
to set a data or metadata buffer as dirty, but it detects that the buffer
is not in the uptodate state:
WARNING: CPU: 0 PID: 6049 at fs/buffer.c:1177 mark_buffer_dirty+0x2e5/0x520
fs/buffer.c:1177
...
Call Trace:
<TASK>
nilfs_palloc_commit_alloc_entry+0x4b/0x160 fs/nilfs2/alloc.c:598
nilfs_ifile_create_inode+0x1dd/0x3a0 fs/nilfs2/ifile.c:73
nilfs_new_inode+0x254/0x830 fs/nilfs2/inode.c:344
nilfs_mkdir+0x10d/0x340 fs/nilfs2/namei.c:218
vfs_mkdir+0x2f9/0x4f0 fs/namei.c:4257
do_mkdirat+0x264/0x3a0 fs/namei.c:4280
__do_sys_mkdirat fs/namei.c:4295 [inline]
__se_sys_mkdirat fs/namei.c:4293 [inline]
__x64_sys_mkdirat+0x87/0xa0 fs/namei.c:4293
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The other is when nilfs_btree_propagate(), which propagates the dirty
state to the ancestor nodes of a b-tree that point to a dirty buffer,
detects that the origin buffer is not dirty, even though it should be:
WARNING: CPU: 0 PID: 5245 at fs/nilfs2/btree.c:2089
nilfs_btree_propagate+0xc79/0xdf0 fs/nilfs2/btree.c:2089
...
Call Trace:
<TASK>
nilfs_bmap_propagate+0x75/0x120 fs/nilfs2/bmap.c:345
nilfs_collect_file_data+0x4d/0xd0 fs/nilfs2/segment.c:587
nilfs_segctor_apply_buffers+0x184/0x340 fs/nilfs2/segment.c:1006
nilfs_segctor_scan_file+0x28c/0xa50 fs/nilfs2/segment.c:1045
nilfs_segctor_collect_blocks fs/nilfs2/segment.c:1216 [inline]
nilfs_segctor_collect fs/nilfs2/segment.c:1540 [inline]
nilfs_segctor_do_construct+0x1c28/0x6b90 fs/nilfs2/segment.c:2115
nilfs_segctor_construct+0x181/0x6b0 fs/nilfs2/segment.c:2479
nilfs_segctor_thread_construct fs/nilfs2/segment.c:2587 [inline]
nilfs_segctor_thread+0x69e/0xe80 fs/nilfs2/segment.c:2701
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Both of these issues are caused by the callbacks that handle the
page/folio write requests, forcibly clear various states, including the
working state of the buffers they hold, at unexpected times when they
detect read-only fallback.
Fix these issues by checking if the buffer is referenced before clearing
the page/folio state, and skipping the clear if it is.
|
27 Feb 2025
|
|
|
CVE-2025-21721
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: handle errors that nilfs_prepare_chunk() may return
Patch series "nilfs2: fix issues with rename operations".
This series fixes BUG_ON check failures reported by syzbot around rename
operations, and a minor behavioral issue where the mtime of a child
directory changes when it is renamed instead of moved.
This patch (of 2):
The directory manipulation routines nilfs_set_link() and
nilfs_delete_entry() rewrite the directory entry in the folio/page
previously read by nilfs_find_entry(), so error handling is omitted on the
assumption that nilfs_prepare_chunk(), which prepares the buffer for
rewriting, will always succeed for these. And if an error is returned, it
triggers the legacy BUG_ON() checks in each routine.
This assumption is wrong, as proven by syzbot: the buffer layer called by
nilfs_prepare_chunk() may call nilfs_get_block() if necessary, which may
fail due to metadata corruption or other reasons. This has been there all
along, but improved sanity checks and error handling may have made it more
reproducible in fuzzing tests.
Fix this issue by adding missing error paths in nilfs_set_link(),
nilfs_delete_entry(), and their caller nilfs_rename().
|
27 Feb 2025
|
|
|
CVE-2025-21720
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
xfrm: delete intermediate secpath entry in packet offload mode
Packets handled by hardware have added secpath as a way to inform XFRM
core code that this path was already handled. That secpath is not needed
at all after policy is checked and it is removed later in the stack.
However, in the case of IP forwarding is enabled (/proc/sys/net/ipv4/ip_forward),
that secpath is not removed and packets which already were handled are reentered
to the driver TX path with xfrm_offload set.
The following kernel panic is observed in mlx5 in such case:
mlx5_core 0000:04:00.0 enp4s0f0np0: Link up
mlx5_core 0000:04:00.1 enp4s0f1np1: Link up
Initializing XFRM netlink socket
IPsec XFRM device driver
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor instruction fetch in kernel mode
#PF: error_code(0x0010) - not-present page
PGD 0 P4D 0
Oops: Oops: 0010 [#1] PREEMPT SMP
CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.13.0-rc1-alex #3
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014
RIP: 0010:0x0
Code: Unable to access opcode bytes at 0xffffffffffffffd6.
RSP: 0018:ffffb87380003800 EFLAGS: 00010206
RAX: ffff8df004e02600 RBX: ffffb873800038d8 RCX: 00000000ffff98cf
RDX: ffff8df00733e108 RSI: ffff8df00521fb80 RDI: ffff8df001661f00
RBP: ffffb87380003850 R08: ffff8df013980000 R09: 0000000000000010
R10: 0000000000000002 R11: 0000000000000002 R12: ffff8df001661f00
R13: ffff8df00521fb80 R14: ffff8df00733e108 R15: ffff8df011faf04e
FS: 0000000000000000(0000) GS:ffff8df46b800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffffffffd6 CR3: 0000000106384000 CR4: 0000000000350ef0
Call Trace:
<IRQ>
? show_regs+0x63/0x70
? __die_body+0x20/0x60
? __die+0x2b/0x40
? page_fault_oops+0x15c/0x550
? do_user_addr_fault+0x3ed/0x870
? exc_page_fault+0x7f/0x190
? asm_exc_page_fault+0x27/0x30
mlx5e_ipsec_handle_tx_skb+0xe7/0x2f0 [mlx5_core]
mlx5e_xmit+0x58e/0x1980 [mlx5_core]
? __fib_lookup+0x6a/0xb0
dev_hard_start_xmit+0x82/0x1d0
sch_direct_xmit+0xfe/0x390
__dev_queue_xmit+0x6d8/0xee0
? __fib_lookup+0x6a/0xb0
? internal_add_timer+0x48/0x70
? mod_timer+0xe2/0x2b0
neigh_resolve_output+0x115/0x1b0
__neigh_update+0x26a/0xc50
neigh_update+0x14/0x20
arp_process+0x2cb/0x8e0
? __napi_build_skb+0x5e/0x70
arp_rcv+0x11e/0x1c0
? dev_gro_receive+0x574/0x820
__netif_receive_skb_list_core+0x1cf/0x1f0
netif_receive_skb_list_internal+0x183/0x2a0
napi_complete_done+0x76/0x1c0
mlx5e_napi_poll+0x234/0x7a0 [mlx5_core]
__napi_poll+0x2d/0x1f0
net_rx_action+0x1a6/0x370
? atomic_notifier_call_chain+0x3b/0x50
? irq_int_handler+0x15/0x20 [mlx5_core]
handle_softirqs+0xb9/0x2f0
? handle_irq_event+0x44/0x60
irq_exit_rcu+0xdb/0x100
common_interrupt+0x98/0xc0
</IRQ>
<TASK>
asm_common_interrupt+0x27/0x40
RIP: 0010:pv_native_safe_halt+0xb/0x10
Code: 09 c3 66 66 2e 0f 1f 84 00 00 00 00 00 66 90 0f 22
0f 1f 84 00 00 00 00 00 90 eb 07 0f 00 2d 7f e9 36 00 fb
40 00 83 ff 07 77 21 89 ff ff 24 fd 88 3d a1 bd 0f 21 f8
RSP: 0018:ffffffffbe603de8 EFLAGS: 00000202
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000f92f46680
RDX: 0000000000000037 RSI: 00000000ffffffff RDI: 00000000000518d4
RBP: ffffffffbe603df0 R08: 000000cd42e4dffb R09: ffffffffbe603d70
R10: 0000004d80d62680 R11: 0000000000000001 R12: ffffffffbe60bf40
R13: 0000000000000000 R14: 0000000000000000 R15: ffffffffbe60aff8
? default_idle+0x9/0x20
arch_cpu_idle+0x9/0x10
default_idle_call+0x29/0xf0
do_idle+0x1f2/0x240
cpu_startup_entry+0x2c/0x30
rest_init+0xe7/0x100
start_kernel+0x76b/0xb90
x86_64_start_reservations+0x18/0x30
x86_64_start_kernel+0xc0/0x110
? setup_ghcb+0xe/0x130
common_startup_64+0x13e/0x141
</TASK>
Modules linked in: esp4_offload esp4 xfrm_interface
xfrm6_tunnel tunnel4 tunnel6 xfrm_user xfrm_algo binf
---truncated---
|
27 Feb 2025
|
|
|
CVE-2025-21719
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
ipmr: do not call mr_mfc_uses_dev() for unres entries
syzbot found that calling mr_mfc_uses_dev() for unres entries
would crash [1], because c->mfc_un.res.minvif / c->mfc_un.res.maxvif
alias to "struct sk_buff_head unresolved", which contain two pointers.
This code never worked, lets remove it.
[1]
Unable to handle kernel paging request at virtual address ffff5fff2d536613
KASAN: maybe wild-memory-access in range [0xfffefff96a9b3098-0xfffefff96a9b309f]
Modules linked in:
CPU: 1 UID: 0 PID: 7321 Comm: syz.0.16 Not tainted 6.13.0-rc7-syzkaller-g1950a0af2d55 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : mr_mfc_uses_dev net/ipv4/ipmr_base.c:290 [inline]
pc : mr_table_dump+0x5a4/0x8b0 net/ipv4/ipmr_base.c:334
lr : mr_mfc_uses_dev net/ipv4/ipmr_base.c:289 [inline]
lr : mr_table_dump+0x694/0x8b0 net/ipv4/ipmr_base.c:334
Call trace:
mr_mfc_uses_dev net/ipv4/ipmr_base.c:290 [inline] (P)
mr_table_dump+0x5a4/0x8b0 net/ipv4/ipmr_base.c:334 (P)
mr_rtm_dumproute+0x254/0x454 net/ipv4/ipmr_base.c:382
ipmr_rtm_dumproute+0x248/0x4b4 net/ipv4/ipmr.c:2648
rtnl_dump_all+0x2e4/0x4e8 net/core/rtnetlink.c:4327
rtnl_dumpit+0x98/0x1d0 net/core/rtnetlink.c:6791
netlink_dump+0x4f0/0xbc0 net/netlink/af_netlink.c:2317
netlink_recvmsg+0x56c/0xe64 net/netlink/af_netlink.c:1973
sock_recvmsg_nosec net/socket.c:1033 [inline]
sock_recvmsg net/socket.c:1055 [inline]
sock_read_iter+0x2d8/0x40c net/socket.c:1125
new_sync_read fs/read_write.c:484 [inline]
vfs_read+0x740/0x970 fs/read_write.c:565
ksys_read+0x15c/0x26c fs/read_write.c:708
|
27 Feb 2025
|
CVE-2024-58012
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: Intel: hda-dai: Ensure DAI widget is valid during params
Each cpu DAI should associate with a widget. However, the topology might
not create the right number of DAI widgets for aggregated amps. And it
will cause NULL pointer deference.
Check that the DAI widget associated with the CPU DAI is valid to prevent
NULL pointer deference due to missing DAI widgets in topologies with
aggregated amps.
CVE-2024-58011
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
platform/x86: int3472: Check for adev == NULL
Not all devices have an ACPI companion fwnode, so adev might be NULL. This
can e.g. (theoretically) happen when a user manually binds one of
the int3472 drivers to another i2c/platform device through sysfs.
Add a check for adev not being set and return -ENODEV in that case to
avoid a possible NULL pointer deref in skl_int3472_get_acpi_buffer().
CVE-2024-58010
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
binfmt_flat: Fix integer overflow bug on 32 bit systems
Most of these sizes and counts are capped at 256MB so the math doesn't
result in an integer overflow. The "relocs" count needs to be checked
as well. Otherwise on 32bit systems the calculation of "full_data"
could be wrong.
full_data = data_len + relocs * sizeof(unsigned long);
CVE-2024-58009
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: handle NULL sock pointer in l2cap_sock_alloc
A NULL sock pointer is passed into l2cap_sock_alloc() when it is called
from l2cap_sock_new_connection_cb() and the error handling paths should
also be aware of it.
Seemingly a more elegant solution would be to swap bt_sock_alloc() and
l2cap_chan_create() calls since they are not interdependent to that moment
but then l2cap_chan_create() adds the soon to be deallocated and still
dummy-initialized channel to the global list accessible by many L2CAP
paths. The channel would be removed from the list in short period of time
but be a bit more straight-forward here and just check for NULL instead of
changing the order of function calls.
Found by Linux Verification Center (linuxtesting.org) with SVACE static
analysis tool.
CVE-2024-58008
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
KEYS: trusted: dcp: fix improper sg use with CONFIG_VMAP_STACK=y
With vmalloc stack addresses enabled (CONFIG_VMAP_STACK=y) DCP trusted
keys can crash during en- and decryption of the blob encryption key via
the DCP crypto driver. This is caused by improperly using sg_init_one()
with vmalloc'd stack buffers (plain_key_blob).
Fix this by always using kmalloc() for buffers we give to the DCP crypto
driver.
CVE-2024-58007
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
soc: qcom: socinfo: Avoid out of bounds read of serial number
On MSM8916 devices, the serial number exposed in sysfs is constant and does
not change across individual devices. It's always:
db410c:/sys/devices/soc0$ cat serial_number
2644893864
The firmware used on MSM8916 exposes SOCINFO_VERSION(0, 8), which does not
have support for the serial_num field in the socinfo struct. There is an
existing check to avoid exposing the serial number in that case, but it's
not correct: When checking the item_size returned by SMEM, we need to make
sure the *end* of the serial_num is within bounds, instead of comparing
with the *start* offset. The serial_number currently exposed on MSM8916
devices is just an out of bounds read of whatever comes after the socinfo
struct in SMEM.
Fix this by changing offsetof() to offsetofend(), so that the size of the
field is also taken into account.
CVE-2024-58006
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
PCI: dwc: ep: Prevent changing BAR size/flags in pci_epc_set_bar()
In commit 4284c88fff0e ("PCI: designware-ep: Allow pci_epc_set_bar() update
inbound map address") set_bar() was modified to support dynamically
changing the backing physical address of a BAR that was already configured.
This means that set_bar() can be called twice, without ever calling
clear_bar() (as calling clear_bar() would clear the BAR's PCI address
assigned by the host).
This can only be done if the new BAR size/flags does not differ from the
existing BAR configuration. Add these missing checks.
If we allow set_bar() to set e.g. a new BAR size that differs from the
existing BAR size, the new address translation range will be smaller than
the BAR size already determined by the host, which would mean that a read
past the new BAR size would pass the iATU untranslated, which could allow
the host to read memory not belonging to the new struct pci_epf_bar.
While at it, add comments which clarifies the support for dynamically
changing the physical address of a BAR. (Which was also missing.)
CVE-2024-58005
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
tpm: Change to kvalloc() in eventlog/acpi.c
The following failure was reported on HPE ProLiant D320:
[ 10.693310][ T1] tpm_tis STM0925:00: 2.0 TPM (device-id 0x3, rev-id 0)
[ 10.848132][ T1] ------------[ cut here ]------------
[ 10.853559][ T1] WARNING: CPU: 59 PID: 1 at mm/page_alloc.c:4727 __alloc_pages_noprof+0x2ca/0x330
[ 10.862827][ T1] Modules linked in:
[ 10.866671][ T1] CPU: 59 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.0-lp155.2.g52785e2-default #1 openSUSE Tumbleweed (unreleased) 588cd98293a7c9eba9013378d807364c088c9375
[ 10.882741][ T1] Hardware name: HPE ProLiant DL320 Gen12/ProLiant DL320 Gen12, BIOS 1.20 10/28/2024
[ 10.892170][ T1] RIP: 0010:__alloc_pages_noprof+0x2ca/0x330
[ 10.898103][ T1] Code: 24 08 e9 4a fe ff ff e8 34 36 fa ff e9 88 fe ff ff 83 fe 0a 0f 86 b3 fd ff ff 80 3d 01 e7 ce 01 00 75 09 c6 05 f8 e6 ce 01 01 <0f> 0b 45 31 ff e9 e5 fe ff ff f7 c2 00 00 08 00 75 42 89 d9 80 e1
[ 10.917750][ T1] RSP: 0000:ffffb7cf40077980 EFLAGS: 00010246
[ 10.923777][ T1] RAX: 0000000000000000 RBX: 0000000000040cc0 RCX: 0000000000000000
[ 10.931727][ T1] RDX: 0000000000000000 RSI: 000000000000000c RDI: 0000000000040cc0
The above transcript shows that ACPI pointed a 16 MiB buffer for the log
events because RSI maps to the 'order' parameter of __alloc_pages_noprof().
Address the bug by moving from devm_kmalloc() to devm_add_action() and
kvmalloc() and devm_add_action().
CVE-2024-58004
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
media: intel/ipu6: remove cpu latency qos request on error
Fix cpu latency qos list corruption like below. It happens when
we do not remove cpu latency request on error path and free
corresponding memory.
[ 30.634378] l7 kernel: list_add corruption. prev->next should be next (ffffffff9645e960), but was 0000000100100001. (prev=ffff8e9e877e20a8).
[ 30.634388] l7 kernel: WARNING: CPU: 2 PID: 2008 at lib/list_debug.c:32 __list_add_valid_or_report+0x83/0xa0
<snip>
[ 30.634640] l7 kernel: Call Trace:
[ 30.634650] l7 kernel: <TASK>
[ 30.634659] l7 kernel: ? __list_add_valid_or_report+0x83/0xa0
[ 30.634669] l7 kernel: ? __warn.cold+0x93/0xf6
[ 30.634678] l7 kernel: ? __list_add_valid_or_report+0x83/0xa0
[ 30.634690] l7 kernel: ? report_bug+0xff/0x140
[ 30.634702] l7 kernel: ? handle_bug+0x58/0x90
[ 30.634712] l7 kernel: ? exc_invalid_op+0x17/0x70
[ 30.634723] l7 kernel: ? asm_exc_invalid_op+0x1a/0x20
[ 30.634733] l7 kernel: ? __list_add_valid_or_report+0x83/0xa0
[ 30.634742] l7 kernel: plist_add+0xdd/0x140
[ 30.634754] l7 kernel: pm_qos_update_target+0xa0/0x1f0
[ 30.634764] l7 kernel: cpu_latency_qos_update_request+0x61/0xc0
[ 30.634773] l7 kernel: intel_dp_aux_xfer+0x4c7/0x6e0 [i915 1f824655ed04687c2b0d23dbce759fa785f6d033]
CVE-2024-58003
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
media: i2c: ds90ub9x3: Fix extra fwnode_handle_put()
The ub913 and ub953 drivers call fwnode_handle_put(priv->sd.fwnode) as
part of their remove process, and if the driver is removed multiple
times, eventually leads to put "overflow", possibly causing memory
corruption or crash.
The fwnode_handle_put() is a leftover from commit 905f88ccebb1 ("media:
i2c: ds90ub9x3: Fix sub-device matching"), which changed the code
related to the sd.fwnode, but missed removing these fwnode_handle_put()
calls.
CVE-2024-58002
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
media: uvcvideo: Remove dangling pointers
When an async control is written, we copy a pointer to the file handle
that started the operation. That pointer will be used when the device is
done. Which could be anytime in the future.
If the user closes that file descriptor, its structure will be freed,
and there will be one dangling pointer per pending async control, that
the driver will try to use.
Clean all the dangling pointers during release().
To avoid adding a performance penalty in the most common case (no async
operation), a counter has been introduced with some logic to make sure
that it is properly handled.
CVE-2024-58001
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: handle a symlink read error correctly
Patch series "Convert ocfs2 to use folios".
Mark did a conversion of ocfs2 to use folios and sent it to me as a
giant patch for review ;-)
So I've redone it as individual patches, and credited Mark for the patches
where his code is substantially the same. It's not a bad way to do it;
his patch had some bugs and my patches had some bugs. Hopefully all our
bugs were different from each other. And hopefully Mark likes all the
changes I made to his code!
This patch (of 23):
If we can't read the buffer, be sure to unlock the page before returning.
CVE-2025-21731
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
nbd: don't allow reconnect after disconnect
Following process can cause nbd_config UAF:
1) grab nbd_config temporarily;
2) nbd_genl_disconnect() flush all recv_work() and release the
initial reference:
nbd_genl_disconnect
nbd_disconnect_and_put
nbd_disconnect
flush_workqueue(nbd->recv_workq)
if (test_and_clear_bit(NBD_RT_HAS_CONFIG_REF, ...))
nbd_config_put
-> due to step 1), reference is still not zero
3) nbd_genl_reconfigure() queue recv_work() again;
nbd_genl_reconfigure
config = nbd_get_config_unlocked(nbd)
if (!config)
-> succeed
if (!test_bit(NBD_RT_BOUND, ...))
-> succeed
nbd_reconnect_socket
queue_work(nbd->recv_workq, &args->work)
4) step 1) release the reference;
5) Finially, recv_work() will trigger UAF:
recv_work
nbd_config_put(nbd)
-> nbd_config is freed
atomic_dec(&config->recv_threads)
-> UAF
Fix the problem by clearing NBD_RT_BOUND in nbd_genl_disconnect(), so
that nbd_genl_reconfigure() will fail.
CVE-2025-21730
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: avoid to init mgnt_entry list twice when WoWLAN failed
If WoWLAN failed in resume flow, the rtw89_ops_add_interface() triggered
without removing the interface first. Then the mgnt_entry list init again,
causing the list_empty() check in rtw89_chanctx_ops_assign_vif()
useless, and list_add_tail() again. Therefore, we have added a check to
prevent double adding of the list.
rtw89_8852ce 0000:01:00.0: failed to check wow status disabled
rtw89_8852ce 0000:01:00.0: wow: failed to check disable fw ready
rtw89_8852ce 0000:01:00.0: wow: failed to swap to normal fw
rtw89_8852ce 0000:01:00.0: failed to disable wow
rtw89_8852ce 0000:01:00.0: failed to resume for wow -110
rtw89_8852ce 0000:01:00.0: MAC has already powered on
i2c_hid_acpi i2c-ILTK0001:00: PM: acpi_subsys_resume+0x0/0x60 returned 0 after 284705 usecs
list_add corruption. prev->next should be next (ffff9d9719d82228), but was ffff9d9719f96030. (prev=ffff9d9719f96030).
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:34!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 2 PID: 6918 Comm: kworker/u8:19 Tainted: G U O
Hardware name: Google Anraggar/Anraggar, BIOS Google_Anraggar.15217.514.0 03/25/2024
Workqueue: events_unbound async_run_entry_fn
RIP: 0010:__list_add_valid_or_report+0x9f/0xb0
Code: e8 56 89 ff ff 0f 0b 48 c7 c7 3e fc e0 96 48 89 c6 e8 45 89 ff ...
RSP: 0018:ffffa51b42bbbaf0 EFLAGS: 00010246
RAX: 0000000000000075 RBX: ffff9d9719d82ab0 RCX: 13acb86e047a4400
RDX: 3fffffffffffffff RSI: 0000000000000000 RDI: 00000000ffffdfff
RBP: ffffa51b42bbbb28 R08: ffffffff9768e250 R09: 0000000000001fff
R10: ffffffff9765e250 R11: 0000000000005ffd R12: ffff9d9719f95c40
R13: ffff9d9719f95be8 R14: ffff9d97081bfd78 R15: ffff9d9719d82060
FS: 0000000000000000(0000) GS:ffff9d9a6fb00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007e7d029a4060 CR3: 0000000345e38000 CR4: 0000000000750ee0
PKRU: 55555554
Call Trace:
<TASK>
? __die_body+0x68/0xb0
? die+0xaa/0xd0
? do_trap+0x9f/0x170
? __list_add_valid_or_report+0x9f/0xb0
? __list_add_valid_or_report+0x9f/0xb0
? handle_invalid_op+0x69/0x90
? __list_add_valid_or_report+0x9f/0xb0
? exc_invalid_op+0x3c/0x50
? asm_exc_invalid_op+0x16/0x20
? __list_add_valid_or_report+0x9f/0xb0
rtw89_chanctx_ops_assign_vif+0x1f9/0x210 [rtw89_core cbb375c44bf28564ce479002bff66617a25d9ac1]
? __mutex_unlock_slowpath+0xa0/0xf0
rtw89_ops_assign_vif_chanctx+0x4b/0x90 [rtw89_core cbb375c44bf28564ce479002bff66617a25d9ac1]
drv_assign_vif_chanctx+0xa7/0x1f0 [mac80211 6efaad16237edaaea0868b132d4f93ecf918a8b6]
ieee80211_reconfig+0x9cb/0x17b0 [mac80211 6efaad16237edaaea0868b132d4f93ecf918a8b6]
? __pfx_wiphy_resume+0x10/0x10 [cfg80211 572d03acaaa933fe38251be7fce3b3675284b8ed]
? dev_printk_emit+0x51/0x70
? _dev_info+0x6e/0x90
wiphy_resume+0x89/0x180 [cfg80211 572d03acaaa933fe38251be7fce3b3675284b8ed]
? __pfx_wiphy_resume+0x10/0x10 [cfg80211 572d03acaaa933fe38251be7fce3b3675284b8ed]
dpm_run_callback+0x37/0x1e0
device_resume+0x26d/0x4b0
? __pfx_dpm_watchdog_handler+0x10/0x10
async_resume+0x1d/0x30
async_run_entry_fn+0x29/0xd0
worker_thread+0x397/0x970
kthread+0xed/0x110
? __pfx_worker_thread+0x10/0x10
? __pfx_kthread+0x10/0x10
ret_from_fork+0x38/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
CVE-2025-21729
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: fix race between cancel_hw_scan and hw_scan completion
The rtwdev->scanning flag isn't protected by mutex originally, so
cancel_hw_scan can pass the condition, but suddenly hw_scan completion
unset the flag and calls ieee80211_scan_completed() that will free
local->hw_scan_req. Then, cancel_hw_scan raises null-ptr-deref and
use-after-free. Fix it by moving the check condition to where
protected by mutex.
KASAN: null-ptr-deref in range [0x0000000000000088-0x000000000000008f]
CPU: 2 PID: 6922 Comm: kworker/2:2 Tainted: G OE
Hardware name: LENOVO 2356AD1/2356AD1, BIOS G7ETB6WW (2.76 ) 09/10/2019
Workqueue: events cfg80211_conn_work [cfg80211]
RIP: 0010:rtw89_fw_h2c_scan_offload_be+0xc33/0x13c3 [rtw89_core]
Code: 00 45 89 6c 24 1c 0f 85 23 01 00 00 48 8b 85 20 ff ff ff 48 8d
RSP: 0018:ffff88811fd9f068 EFLAGS: 00010206
RAX: dffffc0000000000 RBX: ffff88811fd9f258 RCX: 0000000000000001
RDX: 0000000000000011 RSI: 0000000000000001 RDI: 0000000000000089
RBP: ffff88811fd9f170 R08: 0000000000000000 R09: 0000000000000000
R10: ffff88811fd9f108 R11: 0000000000000000 R12: ffff88810e47f960
R13: 0000000000000000 R14: 000000000000ffff R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff8881d6f00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007531dfca55b0 CR3: 00000001be296004 CR4: 00000000001706e0
Call Trace:
<TASK>
? show_regs+0x61/0x73
? __die_body+0x20/0x73
? die_addr+0x4f/0x7b
? exc_general_protection+0x191/0x1db
? asm_exc_general_protection+0x27/0x30
? rtw89_fw_h2c_scan_offload_be+0xc33/0x13c3 [rtw89_core]
? rtw89_fw_h2c_scan_offload_be+0x458/0x13c3 [rtw89_core]
? __pfx_rtw89_fw_h2c_scan_offload_be+0x10/0x10 [rtw89_core]
? do_raw_spin_lock+0x75/0xdb
? __pfx_do_raw_spin_lock+0x10/0x10
rtw89_hw_scan_offload+0xb5e/0xbf7 [rtw89_core]
? _raw_spin_unlock+0xe/0x24
? __mutex_lock.constprop.0+0x40c/0x471
? __pfx_rtw89_hw_scan_offload+0x10/0x10 [rtw89_core]
? __mutex_lock_slowpath+0x13/0x1f
? mutex_lock+0xa2/0xdc
? __pfx_mutex_lock+0x10/0x10
rtw89_hw_scan_abort+0x58/0xb7 [rtw89_core]
rtw89_ops_cancel_hw_scan+0x120/0x13b [rtw89_core]
ieee80211_scan_cancel+0x468/0x4d0 [mac80211]
ieee80211_prep_connection+0x858/0x899 [mac80211]
ieee80211_mgd_auth+0xbea/0xdde [mac80211]
? __pfx_ieee80211_mgd_auth+0x10/0x10 [mac80211]
? cfg80211_find_elem+0x15/0x29 [cfg80211]
? is_bss+0x1b7/0x1d7 [cfg80211]
ieee80211_auth+0x18/0x27 [mac80211]
cfg80211_mlme_auth+0x3bb/0x3e7 [cfg80211]
cfg80211_conn_do_work+0x410/0xb81 [cfg80211]
? __pfx_cfg80211_conn_do_work+0x10/0x10 [cfg80211]
? __kasan_check_read+0x11/0x1f
? psi_group_change+0x8bc/0x944
? __kasan_check_write+0x14/0x22
? mutex_lock+0x8e/0xdc
? __pfx_mutex_lock+0x10/0x10
? __pfx___radix_tree_lookup+0x10/0x10
cfg80211_conn_work+0x245/0x34d [cfg80211]
? __pfx_cfg80211_conn_work+0x10/0x10 [cfg80211]
? update_cfs_rq_load_avg+0x3bc/0x3d7
? sched_clock_noinstr+0x9/0x1a
? sched_clock+0x10/0x24
? sched_clock_cpu+0x7e/0x42e
? newidle_balance+0x796/0x937
? __pfx_sched_clock_cpu+0x10/0x10
? __pfx_newidle_balance+0x10/0x10
? __kasan_check_read+0x11/0x1f
? psi_group_change+0x8bc/0x944
? _raw_spin_unlock+0xe/0x24
? raw_spin_rq_unlock+0x47/0x54
? raw_spin_rq_unlock_irq+0x9/0x1f
? finish_task_switch.isra.0+0x347/0x586
? __schedule+0x27bf/0x2892
? mutex_unlock+0x80/0xd0
? do_raw_spin_lock+0x75/0xdb
? __pfx___schedule+0x10/0x10
process_scheduled_works+0x58c/0x821
worker_thread+0x4c7/0x586
? __kasan_check_read+0x11/0x1f
kthread+0x285/0x294
? __pfx_worker_thread+0x10/0x10
? __pfx_kthread+0x10/0x10
ret_from_fork+0x29/0x6f
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
CVE-2025-21728
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
bpf: Send signals asynchronously if !preemptible
BPF programs can execute in all kinds of contexts and when a program
running in a non-preemptible context uses the bpf_send_signal() kfunc,
it will cause issues because this kfunc can sleep.
Change `irqs_disabled()` to `!preemptible()`.
CVE-2025-21727
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
padata: fix UAF in padata_reorder
A bug was found when run ltp test:
BUG: KASAN: slab-use-after-free in padata_find_next+0x29/0x1a0
Read of size 4 at addr ffff88bbfe003524 by task kworker/u113:2/3039206
CPU: 0 PID: 3039206 Comm: kworker/u113:2 Kdump: loaded Not tainted 6.6.0+
Workqueue: pdecrypt_parallel padata_parallel_worker
Call Trace:
<TASK>
dump_stack_lvl+0x32/0x50
print_address_description.constprop.0+0x6b/0x3d0
print_report+0xdd/0x2c0
kasan_report+0xa5/0xd0
padata_find_next+0x29/0x1a0
padata_reorder+0x131/0x220
padata_parallel_worker+0x3d/0xc0
process_one_work+0x2ec/0x5a0
If 'mdelay(10)' is added before calling 'padata_find_next' in the
'padata_reorder' function, this issue could be reproduced easily with
ltp test (pcrypt_aead01).
This can be explained as bellow:
pcrypt_aead_encrypt
...
padata_do_parallel
refcount_inc(&pd->refcnt); // add refcnt
...
padata_do_serial
padata_reorder // pd
while (1) {
padata_find_next(pd, true); // using pd
queue_work_on
...
padata_serial_worker crypto_del_alg
padata_put_pd_cnt // sub refcnt
padata_free_shell
padata_put_pd(ps->pd);
// pd is freed
// loop again, but pd is freed
// call padata_find_next, UAF
}
In the padata_reorder function, when it loops in 'while', if the alg is
deleted, the refcnt may be decreased to 0 before entering
'padata_find_next', which leads to UAF.
As mentioned in [1], do_serial is supposed to be called with BHs disabled
and always happen under RCU protection, to address this issue, add
synchronize_rcu() in 'padata_free_shell' wait for all _do_serial calls
to finish.
[1] https://lore.kernel.org/all/20221028160401.cccypv4euxikusiq@parnassus.localdomain/
[2] https://lore.kernel.org/linux-kernel/jfjz5d7zwbytztackem7ibzalm5lnxldi2eofeiczqmqs2m7o6@fq426cwnjtkm/
CVE-2025-21726
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
padata: avoid UAF for reorder_work
Although the previous patch can avoid ps and ps UAF for _do_serial, it
can not avoid potential UAF issue for reorder_work. This issue can
happen just as below:
crypto_request crypto_request crypto_del_alg
padata_do_serial
...
padata_reorder
// processes all remaining
// requests then breaks
while (1) {
if (!padata)
break;
...
}
padata_do_serial
// new request added
list_add
// sees the new request
queue_work(reorder_work)
padata_reorder
queue_work_on(squeue->work)
...
<kworker context>
padata_serial_worker
// completes new request,
// no more outstanding
// requests
crypto_del_alg
// free pd
<kworker context>
invoke_padata_reorder
// UAF of pd
To avoid UAF for 'reorder_work', get 'pd' ref before put 'reorder_work'
into the 'serial_wq' and put 'pd' ref until the 'serial_wq' finish.
CVE-2025-21725
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix oops due to unset link speed
It isn't guaranteed that NETWORK_INTERFACE_INFO::LinkSpeed will always
be set by the server, so the client must handle any values and then
prevent oopses like below from happening:
Oops: divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 0 UID: 0 PID: 1323 Comm: cat Not tainted 6.13.0-rc7 #2
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-3.fc41
04/01/2014
RIP: 0010:cifs_debug_data_proc_show+0xa45/0x1460 [cifs] Code: 00 00 48
89 df e8 3b cd 1b c1 41 f6 44 24 2c 04 0f 84 50 01 00 00 48 89 ef e8
e7 d0 1b c1 49 8b 44 24 18 31 d2 49 8d 7c 24 28 <48> f7 74 24 18 48 89
c3 e8 6e cf 1b c1 41 8b 6c 24 28 49 8d 7c 24
RSP: 0018:ffffc90001817be0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff88811230022c RCX: ffffffffc041bd99
RDX: 0000000000000000 RSI: 0000000000000567 RDI: ffff888112300228
RBP: ffff888112300218 R08: fffff52000302f5f R09: ffffed1022fa58ac
R10: ffff888117d2c566 R11: 00000000fffffffe R12: ffff888112300200
R13: 000000012a15343f R14: 0000000000000001 R15: ffff888113f2db58
FS: 00007fe27119e740(0000) GS:ffff888148600000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fe2633c5000 CR3: 0000000124da0000 CR4: 0000000000750ef0
PKRU: 55555554
Call Trace:
<TASK>
? __die_body.cold+0x19/0x27
? die+0x2e/0x50
? do_trap+0x159/0x1b0
? cifs_debug_data_proc_show+0xa45/0x1460 [cifs]
? do_error_trap+0x90/0x130
? cifs_debug_data_proc_show+0xa45/0x1460 [cifs]
? exc_divide_error+0x39/0x50
? cifs_debug_data_proc_show+0xa45/0x1460 [cifs]
? asm_exc_divide_error+0x1a/0x20
? cifs_debug_data_proc_show+0xa39/0x1460 [cifs]
? cifs_debug_data_proc_show+0xa45/0x1460 [cifs]
? seq_read_iter+0x42e/0x790
seq_read_iter+0x19a/0x790
proc_reg_read_iter+0xbe/0x110
? __pfx_proc_reg_read_iter+0x10/0x10
vfs_read+0x469/0x570
? do_user_addr_fault+0x398/0x760
? __pfx_vfs_read+0x10/0x10
? find_held_lock+0x8a/0xa0
? __pfx_lock_release+0x10/0x10
ksys_read+0xd3/0x170
? __pfx_ksys_read+0x10/0x10
? __rcu_read_unlock+0x50/0x270
? mark_held_locks+0x1a/0x90
do_syscall_64+0xbb/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fe271288911
Code: 00 48 8b 15 01 25 10 00 f7 d8 64 89 02 b8 ff ff ff ff eb bd e8
20 ad 01 00 f3 0f 1e fa 80 3d b5 a7 10 00 00 74 13 31 c0 0f 05 <48> 3d
00 f0 ff ff 77 4f c3 66 0f 1f 44 00 00 55 48 89 e5 48 83 ec
RSP: 002b:00007ffe87c079d8 EFLAGS: 00000246 ORIG_RAX: 0000000000000000
RAX: ffffffffffffffda RBX: 0000000000040000 RCX: 00007fe271288911
RDX: 0000000000040000 RSI: 00007fe2633c6000 RDI: 0000000000000003
RBP: 00007ffe87c07a00 R08: 0000000000000000 R09: 00007fe2713e6380
R10: 0000000000000022 R11: 0000000000000246 R12: 0000000000040000
R13: 00007fe2633c6000 R14: 0000000000000003 R15: 0000000000000000
</TASK>
Fix this by setting cifs_server_iface::speed to a sane value (1Gbps)
by default when link speed is unset.
CVE-2025-21724
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
iommufd/iova_bitmap: Fix shift-out-of-bounds in iova_bitmap_offset_to_index()
Resolve a UBSAN shift-out-of-bounds issue in iova_bitmap_offset_to_index()
where shifting the constant "1" (of type int) by bitmap->mapped.pgshift
(an unsigned long value) could result in undefined behavior.
The constant "1" defaults to a 32-bit "int", and when "pgshift" exceeds
31 (e.g., pgshift = 63) the shift operation overflows, as the result
cannot be represented in a 32-bit type.
To resolve this, the constant is updated to "1UL", promoting it to an
unsigned long type to match the operand's type.
CVE-2025-21723
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix possible crash when setting up bsg fails
If bsg_setup_queue() fails, the bsg_queue is assigned a non-NULL value.
Consequently, in mpi3mr_bsg_exit(), the condition "if(!mrioc->bsg_queue)"
will not be satisfied, preventing execution from entering
bsg_remove_queue(), which could lead to the following crash:
BUG: kernel NULL pointer dereference, address: 000000000000041c
Call Trace:
<TASK>
mpi3mr_bsg_exit+0x1f/0x50 [mpi3mr]
mpi3mr_remove+0x6f/0x340 [mpi3mr]
pci_device_remove+0x3f/0xb0
device_release_driver_internal+0x19d/0x220
unbind_store+0xa4/0xb0
kernfs_fop_write_iter+0x11f/0x200
vfs_write+0x1fc/0x3e0
ksys_write+0x67/0xe0
do_syscall_64+0x38/0x80
entry_SYSCALL_64_after_hwframe+0x78/0xe2
CVE-2025-21722
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: do not force clear folio if buffer is referenced
Patch series "nilfs2: protect busy buffer heads from being force-cleared".
This series fixes the buffer head state inconsistency issues reported by
syzbot that occurs when the filesystem is corrupted and falls back to
read-only, and the associated buffer head use-after-free issue.
This patch (of 2):
Syzbot has reported that after nilfs2 detects filesystem corruption and
falls back to read-only, inconsistencies in the buffer state may occur.
One of the inconsistencies is that when nilfs2 calls mark_buffer_dirty()
to set a data or metadata buffer as dirty, but it detects that the buffer
is not in the uptodate state:
WARNING: CPU: 0 PID: 6049 at fs/buffer.c:1177 mark_buffer_dirty+0x2e5/0x520
fs/buffer.c:1177
...
Call Trace:
<TASK>
nilfs_palloc_commit_alloc_entry+0x4b/0x160 fs/nilfs2/alloc.c:598
nilfs_ifile_create_inode+0x1dd/0x3a0 fs/nilfs2/ifile.c:73
nilfs_new_inode+0x254/0x830 fs/nilfs2/inode.c:344
nilfs_mkdir+0x10d/0x340 fs/nilfs2/namei.c:218
vfs_mkdir+0x2f9/0x4f0 fs/namei.c:4257
do_mkdirat+0x264/0x3a0 fs/namei.c:4280
__do_sys_mkdirat fs/namei.c:4295 [inline]
__se_sys_mkdirat fs/namei.c:4293 [inline]
__x64_sys_mkdirat+0x87/0xa0 fs/namei.c:4293
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The other is when nilfs_btree_propagate(), which propagates the dirty
state to the ancestor nodes of a b-tree that point to a dirty buffer,
detects that the origin buffer is not dirty, even though it should be:
WARNING: CPU: 0 PID: 5245 at fs/nilfs2/btree.c:2089
nilfs_btree_propagate+0xc79/0xdf0 fs/nilfs2/btree.c:2089
...
Call Trace:
<TASK>
nilfs_bmap_propagate+0x75/0x120 fs/nilfs2/bmap.c:345
nilfs_collect_file_data+0x4d/0xd0 fs/nilfs2/segment.c:587
nilfs_segctor_apply_buffers+0x184/0x340 fs/nilfs2/segment.c:1006
nilfs_segctor_scan_file+0x28c/0xa50 fs/nilfs2/segment.c:1045
nilfs_segctor_collect_blocks fs/nilfs2/segment.c:1216 [inline]
nilfs_segctor_collect fs/nilfs2/segment.c:1540 [inline]
nilfs_segctor_do_construct+0x1c28/0x6b90 fs/nilfs2/segment.c:2115
nilfs_segctor_construct+0x181/0x6b0 fs/nilfs2/segment.c:2479
nilfs_segctor_thread_construct fs/nilfs2/segment.c:2587 [inline]
nilfs_segctor_thread+0x69e/0xe80 fs/nilfs2/segment.c:2701
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Both of these issues are caused by the callbacks that handle the
page/folio write requests, forcibly clear various states, including the
working state of the buffers they hold, at unexpected times when they
detect read-only fallback.
Fix these issues by checking if the buffer is referenced before clearing
the page/folio state, and skipping the clear if it is.
CVE-2025-21721
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: handle errors that nilfs_prepare_chunk() may return
Patch series "nilfs2: fix issues with rename operations".
This series fixes BUG_ON check failures reported by syzbot around rename
operations, and a minor behavioral issue where the mtime of a child
directory changes when it is renamed instead of moved.
This patch (of 2):
The directory manipulation routines nilfs_set_link() and
nilfs_delete_entry() rewrite the directory entry in the folio/page
previously read by nilfs_find_entry(), so error handling is omitted on the
assumption that nilfs_prepare_chunk(), which prepares the buffer for
rewriting, will always succeed for these. And if an error is returned, it
triggers the legacy BUG_ON() checks in each routine.
This assumption is wrong, as proven by syzbot: the buffer layer called by
nilfs_prepare_chunk() may call nilfs_get_block() if necessary, which may
fail due to metadata corruption or other reasons. This has been there all
along, but improved sanity checks and error handling may have made it more
reproducible in fuzzing tests.
Fix this issue by adding missing error paths in nilfs_set_link(),
nilfs_delete_entry(), and their caller nilfs_rename().
CVE-2025-21720
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
xfrm: delete intermediate secpath entry in packet offload mode
Packets handled by hardware have added secpath as a way to inform XFRM
core code that this path was already handled. That secpath is not needed
at all after policy is checked and it is removed later in the stack.
However, in the case of IP forwarding is enabled (/proc/sys/net/ipv4/ip_forward),
that secpath is not removed and packets which already were handled are reentered
to the driver TX path with xfrm_offload set.
The following kernel panic is observed in mlx5 in such case:
mlx5_core 0000:04:00.0 enp4s0f0np0: Link up
mlx5_core 0000:04:00.1 enp4s0f1np1: Link up
Initializing XFRM netlink socket
IPsec XFRM device driver
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor instruction fetch in kernel mode
#PF: error_code(0x0010) - not-present page
PGD 0 P4D 0
Oops: Oops: 0010 [#1] PREEMPT SMP
CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.13.0-rc1-alex #3
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014
RIP: 0010:0x0
Code: Unable to access opcode bytes at 0xffffffffffffffd6.
RSP: 0018:ffffb87380003800 EFLAGS: 00010206
RAX: ffff8df004e02600 RBX: ffffb873800038d8 RCX: 00000000ffff98cf
RDX: ffff8df00733e108 RSI: ffff8df00521fb80 RDI: ffff8df001661f00
RBP: ffffb87380003850 R08: ffff8df013980000 R09: 0000000000000010
R10: 0000000000000002 R11: 0000000000000002 R12: ffff8df001661f00
R13: ffff8df00521fb80 R14: ffff8df00733e108 R15: ffff8df011faf04e
FS: 0000000000000000(0000) GS:ffff8df46b800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffffffffd6 CR3: 0000000106384000 CR4: 0000000000350ef0
Call Trace:
<IRQ>
? show_regs+0x63/0x70
? __die_body+0x20/0x60
? __die+0x2b/0x40
? page_fault_oops+0x15c/0x550
? do_user_addr_fault+0x3ed/0x870
? exc_page_fault+0x7f/0x190
? asm_exc_page_fault+0x27/0x30
mlx5e_ipsec_handle_tx_skb+0xe7/0x2f0 [mlx5_core]
mlx5e_xmit+0x58e/0x1980 [mlx5_core]
? __fib_lookup+0x6a/0xb0
dev_hard_start_xmit+0x82/0x1d0
sch_direct_xmit+0xfe/0x390
__dev_queue_xmit+0x6d8/0xee0
? __fib_lookup+0x6a/0xb0
? internal_add_timer+0x48/0x70
? mod_timer+0xe2/0x2b0
neigh_resolve_output+0x115/0x1b0
__neigh_update+0x26a/0xc50
neigh_update+0x14/0x20
arp_process+0x2cb/0x8e0
? __napi_build_skb+0x5e/0x70
arp_rcv+0x11e/0x1c0
? dev_gro_receive+0x574/0x820
__netif_receive_skb_list_core+0x1cf/0x1f0
netif_receive_skb_list_internal+0x183/0x2a0
napi_complete_done+0x76/0x1c0
mlx5e_napi_poll+0x234/0x7a0 [mlx5_core]
__napi_poll+0x2d/0x1f0
net_rx_action+0x1a6/0x370
? atomic_notifier_call_chain+0x3b/0x50
? irq_int_handler+0x15/0x20 [mlx5_core]
handle_softirqs+0xb9/0x2f0
? handle_irq_event+0x44/0x60
irq_exit_rcu+0xdb/0x100
common_interrupt+0x98/0xc0
</IRQ>
<TASK>
asm_common_interrupt+0x27/0x40
RIP: 0010:pv_native_safe_halt+0xb/0x10
Code: 09 c3 66 66 2e 0f 1f 84 00 00 00 00 00 66 90 0f 22
0f 1f 84 00 00 00 00 00 90 eb 07 0f 00 2d 7f e9 36 00 fb
40 00 83 ff 07 77 21 89 ff ff 24 fd 88 3d a1 bd 0f 21 f8
RSP: 0018:ffffffffbe603de8 EFLAGS: 00000202
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000f92f46680
RDX: 0000000000000037 RSI: 00000000ffffffff RDI: 00000000000518d4
RBP: ffffffffbe603df0 R08: 000000cd42e4dffb R09: ffffffffbe603d70
R10: 0000004d80d62680 R11: 0000000000000001 R12: ffffffffbe60bf40
R13: 0000000000000000 R14: 0000000000000000 R15: ffffffffbe60aff8
? default_idle+0x9/0x20
arch_cpu_idle+0x9/0x10
default_idle_call+0x29/0xf0
do_idle+0x1f2/0x240
cpu_startup_entry+0x2c/0x30
rest_init+0xe7/0x100
start_kernel+0x76b/0xb90
x86_64_start_reservations+0x18/0x30
x86_64_start_kernel+0xc0/0x110
? setup_ghcb+0xe/0x130
common_startup_64+0x13e/0x141
</TASK>
Modules linked in: esp4_offload esp4 xfrm_interface
xfrm6_tunnel tunnel4 tunnel6 xfrm_user xfrm_algo binf
---truncated---
CVE-2025-21719
N/A
27 Feb 2025
In the Linux kernel, the following vulnerability has been resolved:
ipmr: do not call mr_mfc_uses_dev() for unres entries
syzbot found that calling mr_mfc_uses_dev() for unres entries
would crash [1], because c->mfc_un.res.minvif / c->mfc_un.res.maxvif
alias to "struct sk_buff_head unresolved", which contain two pointers.
This code never worked, lets remove it.
[1]
Unable to handle kernel paging request at virtual address ffff5fff2d536613
KASAN: maybe wild-memory-access in range [0xfffefff96a9b3098-0xfffefff96a9b309f]
Modules linked in:
CPU: 1 UID: 0 PID: 7321 Comm: syz.0.16 Not tainted 6.13.0-rc7-syzkaller-g1950a0af2d55 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : mr_mfc_uses_dev net/ipv4/ipmr_base.c:290 [inline]
pc : mr_table_dump+0x5a4/0x8b0 net/ipv4/ipmr_base.c:334
lr : mr_mfc_uses_dev net/ipv4/ipmr_base.c:289 [inline]
lr : mr_table_dump+0x694/0x8b0 net/ipv4/ipmr_base.c:334
Call trace:
mr_mfc_uses_dev net/ipv4/ipmr_base.c:290 [inline] (P)
mr_table_dump+0x5a4/0x8b0 net/ipv4/ipmr_base.c:334 (P)
mr_rtm_dumproute+0x254/0x454 net/ipv4/ipmr_base.c:382
ipmr_rtm_dumproute+0x248/0x4b4 net/ipv4/ipmr.c:2648
rtnl_dump_all+0x2e4/0x4e8 net/core/rtnetlink.c:4327
rtnl_dumpit+0x98/0x1d0 net/core/rtnetlink.c:6791
netlink_dump+0x4f0/0xbc0 net/netlink/af_netlink.c:2317
netlink_recvmsg+0x56c/0xe64 net/netlink/af_netlink.c:1973
sock_recvmsg_nosec net/socket.c:1033 [inline]
sock_recvmsg net/socket.c:1055 [inline]
sock_read_iter+0x2d8/0x40c net/socket.c:1125
new_sync_read fs/read_write.c:484 [inline]
vfs_read+0x740/0x970 fs/read_write.c:565
ksys_read+0x15c/0x26c fs/read_write.c:708
Page 439 of 685
Page 439 of 685