Searching...
Please wait while we search the database
| CVE ID | Severity | Description | Published | Actions |
|---|---|---|---|---|
|
CVE-2024-31869
|
N/A |
Airflow versions 2.7.0 through 2.8.4 have a vulnerability that allows an authenticated user to see sensitive provider configuration via the "configuration" UI page when "non-sensitive-only" was set as "webserver.expose_config" configuration (The celery provider is the only community provider currently that has sensitive configurations). You should migrate to Airflow 2.9 or change your "expose_config" configuration to False as a workaround. This is similar, but different to CVE-2023-46288 https://github.com/advisories/GHSA-9qqg-mh7c-chfq which concerned API, not UI configuration page.
|
18 Apr 2024
|
|
|
CVE-2024-1249
|
HIGH |
A flaw was found in Keycloak's OIDC component in the "checkLoginIframe," which allows unvalidated cross-origin messages. This flaw allows attackers to coordinate and send millions of requests in seconds using simple code, significantly impacting the application's availability without proper origin validation for incoming messages.
|
17 Apr 2024
|
|
|
CVE-2024-26907
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix fortify source warning while accessing Eth segment
------------[ cut here ]------------
memcpy: detected field-spanning write (size 56) of single field "eseg->inline_hdr.start" at /var/lib/dkms/mlnx-ofed-kernel/5.8/build/drivers/infiniband/hw/mlx5/wr.c:131 (size 2)
WARNING: CPU: 0 PID: 293779 at /var/lib/dkms/mlnx-ofed-kernel/5.8/build/drivers/infiniband/hw/mlx5/wr.c:131 mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
Modules linked in: 8021q garp mrp stp llc rdma_ucm(OE) rdma_cm(OE) iw_cm(OE) ib_ipoib(OE) ib_cm(OE) ib_umad(OE) mlx5_ib(OE) ib_uverbs(OE) ib_core(OE) mlx5_core(OE) pci_hyperv_intf mlxdevm(OE) mlx_compat(OE) tls mlxfw(OE) psample nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables libcrc32c nfnetlink mst_pciconf(OE) knem(OE) vfio_pci vfio_pci_core vfio_iommu_type1 vfio iommufd irqbypass cuse nfsv3 nfs fscache netfs xfrm_user xfrm_algo ipmi_devintf ipmi_msghandler binfmt_misc crct10dif_pclmul crc32_pclmul polyval_clmulni polyval_generic ghash_clmulni_intel sha512_ssse3 snd_pcsp aesni_intel crypto_simd cryptd snd_pcm snd_timer joydev snd soundcore input_leds serio_raw evbug nfsd auth_rpcgss nfs_acl lockd grace sch_fq_codel sunrpc drm efi_pstore ip_tables x_tables autofs4 psmouse virtio_net net_failover failover floppy
[last unloaded: mlx_compat(OE)]
CPU: 0 PID: 293779 Comm: ssh Tainted: G OE 6.2.0-32-generic #32~22.04.1-Ubuntu
Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
RIP: 0010:mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
Code: 0c 01 00 a8 01 75 25 48 8b 75 a0 b9 02 00 00 00 48 c7 c2 10 5b fd c0 48 c7 c7 80 5b fd c0 c6 05 57 0c 03 00 01 e8 95 4d 93 da <0f> 0b 44 8b 4d b0 4c 8b 45 c8 48 8b 4d c0 e9 49 fb ff ff 41 0f b7
RSP: 0018:ffffb5b48478b570 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffb5b48478b628 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: ffffb5b48478b5e8
R13: ffff963a3c609b5e R14: ffff9639c3fbd800 R15: ffffb5b480475a80
FS: 00007fc03b444c80(0000) GS:ffff963a3dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000556f46bdf000 CR3: 0000000006ac6003 CR4: 00000000003706f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? show_regs+0x72/0x90
? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
? __warn+0x8d/0x160
? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
? report_bug+0x1bb/0x1d0
? handle_bug+0x46/0x90
? exc_invalid_op+0x19/0x80
? asm_exc_invalid_op+0x1b/0x20
? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
mlx5_ib_post_send_nodrain+0xb/0x20 [mlx5_ib]
ipoib_send+0x2ec/0x770 [ib_ipoib]
ipoib_start_xmit+0x5a0/0x770 [ib_ipoib]
dev_hard_start_xmit+0x8e/0x1e0
? validate_xmit_skb_list+0x4d/0x80
sch_direct_xmit+0x116/0x3a0
__dev_xmit_skb+0x1fd/0x580
__dev_queue_xmit+0x284/0x6b0
? _raw_spin_unlock_irq+0xe/0x50
? __flush_work.isra.0+0x20d/0x370
? push_pseudo_header+0x17/0x40 [ib_ipoib]
neigh_connected_output+0xcd/0x110
ip_finish_output2+0x179/0x480
? __smp_call_single_queue+0x61/0xa0
__ip_finish_output+0xc3/0x190
ip_finish_output+0x2e/0xf0
ip_output+0x78/0x110
? __pfx_ip_finish_output+0x10/0x10
ip_local_out+0x64/0x70
__ip_queue_xmit+0x18a/0x460
ip_queue_xmit+0x15/0x30
__tcp_transmit_skb+0x914/0x9c0
tcp_write_xmit+0x334/0x8d0
tcp_push_one+0x3c/0x60
tcp_sendmsg_locked+0x2e1/0xac0
tcp_sendmsg+0x2d/0x50
inet_sendmsg+0x43/0x90
sock_sendmsg+0x68/0x80
sock_write_iter+0x93/0x100
vfs_write+0x326/0x3c0
ksys_write+0xbd/0xf0
? do_syscall_64+0x69/0x90
__x64_sys_write+0x19/0x30
do_syscall_
---truncated---
|
17 Apr 2024
|
|
|
CVE-2024-26906
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
x86/mm: Disallow vsyscall page read for copy_from_kernel_nofault()
When trying to use copy_from_kernel_nofault() to read vsyscall page
through a bpf program, the following oops was reported:
BUG: unable to handle page fault for address: ffffffffff600000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 3231067 P4D 3231067 PUD 3233067 PMD 3235067 PTE 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 1 PID: 20390 Comm: test_progs ...... 6.7.0+ #58
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ......
RIP: 0010:copy_from_kernel_nofault+0x6f/0x110
......
Call Trace:
<TASK>
? copy_from_kernel_nofault+0x6f/0x110
bpf_probe_read_kernel+0x1d/0x50
bpf_prog_2061065e56845f08_do_probe_read+0x51/0x8d
trace_call_bpf+0xc5/0x1c0
perf_call_bpf_enter.isra.0+0x69/0xb0
perf_syscall_enter+0x13e/0x200
syscall_trace_enter+0x188/0x1c0
do_syscall_64+0xb5/0xe0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
</TASK>
......
---[ end trace 0000000000000000 ]---
The oops is triggered when:
1) A bpf program uses bpf_probe_read_kernel() to read from the vsyscall
page and invokes copy_from_kernel_nofault() which in turn calls
__get_user_asm().
2) Because the vsyscall page address is not readable from kernel space,
a page fault exception is triggered accordingly.
3) handle_page_fault() considers the vsyscall page address as a user
space address instead of a kernel space address. This results in the
fix-up setup by bpf not being applied and a page_fault_oops() is invoked
due to SMAP.
Considering handle_page_fault() has already considered the vsyscall page
address as a userspace address, fix the problem by disallowing vsyscall
page read for copy_from_kernel_nofault().
|
17 Apr 2024
|
|
|
CVE-2024-26903
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: rfcomm: Fix null-ptr-deref in rfcomm_check_security
During our fuzz testing of the connection and disconnection process at the
RFCOMM layer, we discovered this bug. By comparing the packets from a
normal connection and disconnection process with the testcase that
triggered a KASAN report. We analyzed the cause of this bug as follows:
1. In the packets captured during a normal connection, the host sends a
`Read Encryption Key Size` type of `HCI_CMD` packet
(Command Opcode: 0x1408) to the controller to inquire the length of
encryption key.After receiving this packet, the controller immediately
replies with a Command Completepacket (Event Code: 0x0e) to return the
Encryption Key Size.
2. In our fuzz test case, the timing of the controller's response to this
packet was delayed to an unexpected point: after the RFCOMM and L2CAP
layers had disconnected but before the HCI layer had disconnected.
3. After receiving the Encryption Key Size Response at the time described
in point 2, the host still called the rfcomm_check_security function.
However, by this time `struct l2cap_conn *conn = l2cap_pi(sk)->chan->conn;`
had already been released, and when the function executed
`return hci_conn_security(conn->hcon, d->sec_level, auth_type, d->out);`,
specifically when accessing `conn->hcon`, a null-ptr-deref error occurred.
To fix this bug, check if `sk->sk_state` is BT_CLOSED before calling
rfcomm_recv_frame in rfcomm_process_rx.
|
17 Apr 2024
|
|
|
CVE-2024-26878
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
quota: Fix potential NULL pointer dereference
Below race may cause NULL pointer dereference
P1 P2
dquot_free_inode quota_off
drop_dquot_ref
remove_dquot_ref
dquots = i_dquot(inode)
dquots = i_dquot(inode)
srcu_read_lock
dquots[cnt]) != NULL (1)
dquots[type] = NULL (2)
spin_lock(&dquots[cnt]->dq_dqb_lock) (3)
....
If dquot_free_inode(or other routines) checks inode's quota pointers (1)
before quota_off sets it to NULL(2) and use it (3) after that, NULL pointer
dereference will be triggered.
So let's fix it by using a temporary pointer to avoid this issue.
|
17 Apr 2024
|
|
|
CVE-2024-26846
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
nvme-fc: do not wait in vain when unloading module
The module exit path has race between deleting all controllers and
freeing 'left over IDs'. To prevent double free a synchronization
between nvme_delete_ctrl and ida_destroy has been added by the initial
commit.
There is some logic around trying to prevent from hanging forever in
wait_for_completion, though it does not handling all cases. E.g.
blktests is able to reproduce the situation where the module unload
hangs forever.
If we completely rely on the cleanup code executed from the
nvme_delete_ctrl path, all IDs will be freed eventually. This makes
calling ida_destroy unnecessary. We only have to ensure that all
nvme_delete_ctrl code has been executed before we leave
nvme_fc_exit_module. This is done by flushing the nvme_delete_wq
workqueue.
While at it, remove the unused nvme_fc_wq workqueue too.
|
17 Apr 2024
|
|
|
CVE-2024-26845
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
scsi: target: core: Add TMF to tmr_list handling
An abort that is responded to by iSCSI itself is added to tmr_list but does
not go to target core. A LUN_RESET that goes through tmr_list takes a
refcounter on the abort and waits for completion. However, the abort will
be never complete because it was not started in target core.
Unable to locate ITT: 0x05000000 on CID: 0
Unable to locate RefTaskTag: 0x05000000 on CID: 0.
wait_for_tasks: Stopping tmf LUN_RESET with tag 0x0 ref_task_tag 0x0 i_state 34 t_state ISTATE_PROCESSING refcnt 2 transport_state active,stop,fabric_stop
wait for tasks: tmf LUN_RESET with tag 0x0 ref_task_tag 0x0 i_state 34 t_state ISTATE_PROCESSING refcnt 2 transport_state active,stop,fabric_stop
...
INFO: task kworker/0:2:49 blocked for more than 491 seconds.
task:kworker/0:2 state:D stack: 0 pid: 49 ppid: 2 flags:0x00000800
Workqueue: events target_tmr_work [target_core_mod]
Call Trace:
__switch_to+0x2c4/0x470
_schedule+0x314/0x1730
schedule+0x64/0x130
schedule_timeout+0x168/0x430
wait_for_completion+0x140/0x270
target_put_cmd_and_wait+0x64/0xb0 [target_core_mod]
core_tmr_lun_reset+0x30/0xa0 [target_core_mod]
target_tmr_work+0xc8/0x1b0 [target_core_mod]
process_one_work+0x2d4/0x5d0
worker_thread+0x78/0x6c0
To fix this, only add abort to tmr_list if it will be handled by target
core.
|
17 Apr 2024
|
|
|
CVE-2024-26844
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
block: Fix WARNING in _copy_from_iter
Syzkaller reports a warning in _copy_from_iter because an
iov_iter is supposedly used in the wrong direction. The reason
is that syzcaller managed to generate a request with
a transfer direction of SG_DXFER_TO_FROM_DEV. This instructs
the kernel to copy user buffers into the kernel, read into
the copied buffers and then copy the data back to user space.
Thus the iovec is used in both directions.
Detect this situation in the block layer and construct a new
iterator with the correct direction for the copy-in.
|
17 Apr 2024
|
|
|
CVE-2024-26842
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: core: Fix shift issue in ufshcd_clear_cmd()
When task_tag >= 32 (in MCQ mode) and sizeof(unsigned int) == 4, 1U <<
task_tag will out of bounds for a u32 mask. Fix this up to prevent
SHIFT_ISSUE (bitwise shifts that are out of bounds for their data type).
[name:debug_monitors&]Unexpected kernel BRK exception at EL1
[name:traps&]Internal error: BRK handler: 00000000f2005514 [#1] PREEMPT SMP
[name:mediatek_cpufreq_hw&]cpufreq stop DVFS log done
[name:mrdump&]Kernel Offset: 0x1ba5800000 from 0xffffffc008000000
[name:mrdump&]PHYS_OFFSET: 0x80000000
[name:mrdump&]pstate: 22400005 (nzCv daif +PAN -UAO)
[name:mrdump&]pc : [0xffffffdbaf52bb2c] ufshcd_clear_cmd+0x280/0x288
[name:mrdump&]lr : [0xffffffdbaf52a774] ufshcd_wait_for_dev_cmd+0x3e4/0x82c
[name:mrdump&]sp : ffffffc0081471b0
<snip>
Workqueue: ufs_eh_wq_0 ufshcd_err_handler
Call trace:
dump_backtrace+0xf8/0x144
show_stack+0x18/0x24
dump_stack_lvl+0x78/0x9c
dump_stack+0x18/0x44
mrdump_common_die+0x254/0x480 [mrdump]
ipanic_die+0x20/0x30 [mrdump]
notify_die+0x15c/0x204
die+0x10c/0x5f8
arm64_notify_die+0x74/0x13c
do_debug_exception+0x164/0x26c
el1_dbg+0x64/0x80
el1h_64_sync_handler+0x3c/0x90
el1h_64_sync+0x68/0x6c
ufshcd_clear_cmd+0x280/0x288
ufshcd_wait_for_dev_cmd+0x3e4/0x82c
ufshcd_exec_dev_cmd+0x5bc/0x9ac
ufshcd_verify_dev_init+0x84/0x1c8
ufshcd_probe_hba+0x724/0x1ce0
ufshcd_host_reset_and_restore+0x260/0x574
ufshcd_reset_and_restore+0x138/0xbd0
ufshcd_err_handler+0x1218/0x2f28
process_one_work+0x5fc/0x1140
worker_thread+0x7d8/0xe20
kthread+0x25c/0x468
ret_from_fork+0x10/0x20
|
17 Apr 2024
|
|
|
CVE-2023-52642
|
N/A |
In the Linux kernel, the following vulnerability has been resolved:
media: rc: bpf attach/detach requires write permission
Note that bpf attach/detach also requires CAP_NET_ADMIN.
|
17 Apr 2024
|
|
|
CVE-2024-3832
|
N/A |
Object corruption in V8 in Google Chrome prior to 124.0.6367.60 allowed a remote attacker to potentially exploit object corruption via a crafted HTML page. (Chromium security severity: High)
|
17 Apr 2024
|
|
|
CVE-2024-30952
|
N/A |
A stored cross-site scripting (XSS) vulnerability in PESCMS-TEAM v2.3.6 allows attackers to execute arbitrary web scripts or HTML via a crafted payload injected into the domain input field under /youdoamin/?g=Team&m=Setting&a=action.
|
17 Apr 2024
|
|
|
CVE-2024-30981
|
N/A |
SQL Injection vulnerability in /edit-computer-detail.php in phpgurukul Cyber Cafe Management System Using PHP & MySQL v1.0 allows attackers to run arbitrary SQL commands via editid in the application URL.
|
17 Apr 2024
|
|
|
CVE-2024-30989
|
N/A |
Cross Site Scripting vulnerability in /edit-client-details.php of phpgurukul Client Management System using PHP & MySQL 1.1 allows attackers to execute arbitrary code via the "cname", "comname", "state" and "city" parameter.
|
17 Apr 2024
|
|
|
CVE-2024-31580
|
N/A |
PyTorch before v2.2.0 was discovered to contain a heap buffer overflow vulnerability in the component /runtime/vararg_functions.cpp. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted input.
|
17 Apr 2024
|
|
|
CVE-2023-46060
|
N/A |
A Buffer Overflow vulnerability in Tenda AC500 v.2.0.1.9 allows a remote attacker to cause a denial of service via the port parameter at the goform/setVlanInfo component.
|
17 Apr 2024
|
|
|
CVE-2024-32341
|
N/A |
Multiple cross-site scripting (XSS) vulnerabilities in the Home page of WonderCMS v3.4.3 allows attackers to execute arbitrary web scripts or HTML via a crafted payload injected into any of the parameters.
|
17 Apr 2024
|
|
|
CVE-2024-21121
|
N/A |
16 Apr 2024
|
||
|
CVE-2024-21116
|
N/A |
16 Apr 2024
|
||
|
CVE-2024-21115
|
N/A |
16 Apr 2024
|
||
|
CVE-2024-21113
|
N/A |
16 Apr 2024
|
||
|
CVE-2024-21112
|
N/A |
16 Apr 2024
|
||
|
CVE-2024-21111
|
N/A |
16 Apr 2024
|
||
|
CVE-2024-21104
|
N/A |
16 Apr 2024
|
CVE-2024-31869
N/A
18 Apr 2024
Airflow versions 2.7.0 through 2.8.4 have a vulnerability that allows an authenticated user to see sensitive provider configuration via the "configuration" UI page when "non-sensitive-only" was set as "webserver.expose_config" configuration (The celery provider is the only community provider currently that has sensitive configurations). You should migrate to Airflow 2.9 or change your "expose_config" configuration to False as a workaround. This is similar, but different to CVE-2023-46288 https://github.com/advisories/GHSA-9qqg-mh7c-chfq which concerned API, not UI configuration page.
CVE-2024-1249
HIGH
17 Apr 2024
A flaw was found in Keycloak's OIDC component in the "checkLoginIframe," which allows unvalidated cross-origin messages. This flaw allows attackers to coordinate and send millions of requests in seconds using simple code, significantly impacting the application's availability without proper origin validation for incoming messages.
CVE-2024-26907
N/A
17 Apr 2024
In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix fortify source warning while accessing Eth segment
------------[ cut here ]------------
memcpy: detected field-spanning write (size 56) of single field "eseg->inline_hdr.start" at /var/lib/dkms/mlnx-ofed-kernel/5.8/build/drivers/infiniband/hw/mlx5/wr.c:131 (size 2)
WARNING: CPU: 0 PID: 293779 at /var/lib/dkms/mlnx-ofed-kernel/5.8/build/drivers/infiniband/hw/mlx5/wr.c:131 mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
Modules linked in: 8021q garp mrp stp llc rdma_ucm(OE) rdma_cm(OE) iw_cm(OE) ib_ipoib(OE) ib_cm(OE) ib_umad(OE) mlx5_ib(OE) ib_uverbs(OE) ib_core(OE) mlx5_core(OE) pci_hyperv_intf mlxdevm(OE) mlx_compat(OE) tls mlxfw(OE) psample nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables libcrc32c nfnetlink mst_pciconf(OE) knem(OE) vfio_pci vfio_pci_core vfio_iommu_type1 vfio iommufd irqbypass cuse nfsv3 nfs fscache netfs xfrm_user xfrm_algo ipmi_devintf ipmi_msghandler binfmt_misc crct10dif_pclmul crc32_pclmul polyval_clmulni polyval_generic ghash_clmulni_intel sha512_ssse3 snd_pcsp aesni_intel crypto_simd cryptd snd_pcm snd_timer joydev snd soundcore input_leds serio_raw evbug nfsd auth_rpcgss nfs_acl lockd grace sch_fq_codel sunrpc drm efi_pstore ip_tables x_tables autofs4 psmouse virtio_net net_failover failover floppy
[last unloaded: mlx_compat(OE)]
CPU: 0 PID: 293779 Comm: ssh Tainted: G OE 6.2.0-32-generic #32~22.04.1-Ubuntu
Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
RIP: 0010:mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
Code: 0c 01 00 a8 01 75 25 48 8b 75 a0 b9 02 00 00 00 48 c7 c2 10 5b fd c0 48 c7 c7 80 5b fd c0 c6 05 57 0c 03 00 01 e8 95 4d 93 da <0f> 0b 44 8b 4d b0 4c 8b 45 c8 48 8b 4d c0 e9 49 fb ff ff 41 0f b7
RSP: 0018:ffffb5b48478b570 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffb5b48478b628 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: ffffb5b48478b5e8
R13: ffff963a3c609b5e R14: ffff9639c3fbd800 R15: ffffb5b480475a80
FS: 00007fc03b444c80(0000) GS:ffff963a3dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000556f46bdf000 CR3: 0000000006ac6003 CR4: 00000000003706f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? show_regs+0x72/0x90
? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
? __warn+0x8d/0x160
? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
? report_bug+0x1bb/0x1d0
? handle_bug+0x46/0x90
? exc_invalid_op+0x19/0x80
? asm_exc_invalid_op+0x1b/0x20
? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
mlx5_ib_post_send_nodrain+0xb/0x20 [mlx5_ib]
ipoib_send+0x2ec/0x770 [ib_ipoib]
ipoib_start_xmit+0x5a0/0x770 [ib_ipoib]
dev_hard_start_xmit+0x8e/0x1e0
? validate_xmit_skb_list+0x4d/0x80
sch_direct_xmit+0x116/0x3a0
__dev_xmit_skb+0x1fd/0x580
__dev_queue_xmit+0x284/0x6b0
? _raw_spin_unlock_irq+0xe/0x50
? __flush_work.isra.0+0x20d/0x370
? push_pseudo_header+0x17/0x40 [ib_ipoib]
neigh_connected_output+0xcd/0x110
ip_finish_output2+0x179/0x480
? __smp_call_single_queue+0x61/0xa0
__ip_finish_output+0xc3/0x190
ip_finish_output+0x2e/0xf0
ip_output+0x78/0x110
? __pfx_ip_finish_output+0x10/0x10
ip_local_out+0x64/0x70
__ip_queue_xmit+0x18a/0x460
ip_queue_xmit+0x15/0x30
__tcp_transmit_skb+0x914/0x9c0
tcp_write_xmit+0x334/0x8d0
tcp_push_one+0x3c/0x60
tcp_sendmsg_locked+0x2e1/0xac0
tcp_sendmsg+0x2d/0x50
inet_sendmsg+0x43/0x90
sock_sendmsg+0x68/0x80
sock_write_iter+0x93/0x100
vfs_write+0x326/0x3c0
ksys_write+0xbd/0xf0
? do_syscall_64+0x69/0x90
__x64_sys_write+0x19/0x30
do_syscall_
---truncated---
CVE-2024-26906
N/A
17 Apr 2024
In the Linux kernel, the following vulnerability has been resolved:
x86/mm: Disallow vsyscall page read for copy_from_kernel_nofault()
When trying to use copy_from_kernel_nofault() to read vsyscall page
through a bpf program, the following oops was reported:
BUG: unable to handle page fault for address: ffffffffff600000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 3231067 P4D 3231067 PUD 3233067 PMD 3235067 PTE 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 1 PID: 20390 Comm: test_progs ...... 6.7.0+ #58
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ......
RIP: 0010:copy_from_kernel_nofault+0x6f/0x110
......
Call Trace:
<TASK>
? copy_from_kernel_nofault+0x6f/0x110
bpf_probe_read_kernel+0x1d/0x50
bpf_prog_2061065e56845f08_do_probe_read+0x51/0x8d
trace_call_bpf+0xc5/0x1c0
perf_call_bpf_enter.isra.0+0x69/0xb0
perf_syscall_enter+0x13e/0x200
syscall_trace_enter+0x188/0x1c0
do_syscall_64+0xb5/0xe0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
</TASK>
......
---[ end trace 0000000000000000 ]---
The oops is triggered when:
1) A bpf program uses bpf_probe_read_kernel() to read from the vsyscall
page and invokes copy_from_kernel_nofault() which in turn calls
__get_user_asm().
2) Because the vsyscall page address is not readable from kernel space,
a page fault exception is triggered accordingly.
3) handle_page_fault() considers the vsyscall page address as a user
space address instead of a kernel space address. This results in the
fix-up setup by bpf not being applied and a page_fault_oops() is invoked
due to SMAP.
Considering handle_page_fault() has already considered the vsyscall page
address as a userspace address, fix the problem by disallowing vsyscall
page read for copy_from_kernel_nofault().
CVE-2024-26903
N/A
17 Apr 2024
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: rfcomm: Fix null-ptr-deref in rfcomm_check_security
During our fuzz testing of the connection and disconnection process at the
RFCOMM layer, we discovered this bug. By comparing the packets from a
normal connection and disconnection process with the testcase that
triggered a KASAN report. We analyzed the cause of this bug as follows:
1. In the packets captured during a normal connection, the host sends a
`Read Encryption Key Size` type of `HCI_CMD` packet
(Command Opcode: 0x1408) to the controller to inquire the length of
encryption key.After receiving this packet, the controller immediately
replies with a Command Completepacket (Event Code: 0x0e) to return the
Encryption Key Size.
2. In our fuzz test case, the timing of the controller's response to this
packet was delayed to an unexpected point: after the RFCOMM and L2CAP
layers had disconnected but before the HCI layer had disconnected.
3. After receiving the Encryption Key Size Response at the time described
in point 2, the host still called the rfcomm_check_security function.
However, by this time `struct l2cap_conn *conn = l2cap_pi(sk)->chan->conn;`
had already been released, and when the function executed
`return hci_conn_security(conn->hcon, d->sec_level, auth_type, d->out);`,
specifically when accessing `conn->hcon`, a null-ptr-deref error occurred.
To fix this bug, check if `sk->sk_state` is BT_CLOSED before calling
rfcomm_recv_frame in rfcomm_process_rx.
CVE-2024-26878
N/A
17 Apr 2024
In the Linux kernel, the following vulnerability has been resolved:
quota: Fix potential NULL pointer dereference
Below race may cause NULL pointer dereference
P1 P2
dquot_free_inode quota_off
drop_dquot_ref
remove_dquot_ref
dquots = i_dquot(inode)
dquots = i_dquot(inode)
srcu_read_lock
dquots[cnt]) != NULL (1)
dquots[type] = NULL (2)
spin_lock(&dquots[cnt]->dq_dqb_lock) (3)
....
If dquot_free_inode(or other routines) checks inode's quota pointers (1)
before quota_off sets it to NULL(2) and use it (3) after that, NULL pointer
dereference will be triggered.
So let's fix it by using a temporary pointer to avoid this issue.
CVE-2024-26846
N/A
17 Apr 2024
In the Linux kernel, the following vulnerability has been resolved:
nvme-fc: do not wait in vain when unloading module
The module exit path has race between deleting all controllers and
freeing 'left over IDs'. To prevent double free a synchronization
between nvme_delete_ctrl and ida_destroy has been added by the initial
commit.
There is some logic around trying to prevent from hanging forever in
wait_for_completion, though it does not handling all cases. E.g.
blktests is able to reproduce the situation where the module unload
hangs forever.
If we completely rely on the cleanup code executed from the
nvme_delete_ctrl path, all IDs will be freed eventually. This makes
calling ida_destroy unnecessary. We only have to ensure that all
nvme_delete_ctrl code has been executed before we leave
nvme_fc_exit_module. This is done by flushing the nvme_delete_wq
workqueue.
While at it, remove the unused nvme_fc_wq workqueue too.
CVE-2024-26845
N/A
17 Apr 2024
In the Linux kernel, the following vulnerability has been resolved:
scsi: target: core: Add TMF to tmr_list handling
An abort that is responded to by iSCSI itself is added to tmr_list but does
not go to target core. A LUN_RESET that goes through tmr_list takes a
refcounter on the abort and waits for completion. However, the abort will
be never complete because it was not started in target core.
Unable to locate ITT: 0x05000000 on CID: 0
Unable to locate RefTaskTag: 0x05000000 on CID: 0.
wait_for_tasks: Stopping tmf LUN_RESET with tag 0x0 ref_task_tag 0x0 i_state 34 t_state ISTATE_PROCESSING refcnt 2 transport_state active,stop,fabric_stop
wait for tasks: tmf LUN_RESET with tag 0x0 ref_task_tag 0x0 i_state 34 t_state ISTATE_PROCESSING refcnt 2 transport_state active,stop,fabric_stop
...
INFO: task kworker/0:2:49 blocked for more than 491 seconds.
task:kworker/0:2 state:D stack: 0 pid: 49 ppid: 2 flags:0x00000800
Workqueue: events target_tmr_work [target_core_mod]
Call Trace:
__switch_to+0x2c4/0x470
_schedule+0x314/0x1730
schedule+0x64/0x130
schedule_timeout+0x168/0x430
wait_for_completion+0x140/0x270
target_put_cmd_and_wait+0x64/0xb0 [target_core_mod]
core_tmr_lun_reset+0x30/0xa0 [target_core_mod]
target_tmr_work+0xc8/0x1b0 [target_core_mod]
process_one_work+0x2d4/0x5d0
worker_thread+0x78/0x6c0
To fix this, only add abort to tmr_list if it will be handled by target
core.
CVE-2024-26844
N/A
17 Apr 2024
In the Linux kernel, the following vulnerability has been resolved:
block: Fix WARNING in _copy_from_iter
Syzkaller reports a warning in _copy_from_iter because an
iov_iter is supposedly used in the wrong direction. The reason
is that syzcaller managed to generate a request with
a transfer direction of SG_DXFER_TO_FROM_DEV. This instructs
the kernel to copy user buffers into the kernel, read into
the copied buffers and then copy the data back to user space.
Thus the iovec is used in both directions.
Detect this situation in the block layer and construct a new
iterator with the correct direction for the copy-in.
CVE-2024-26842
N/A
17 Apr 2024
In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: core: Fix shift issue in ufshcd_clear_cmd()
When task_tag >= 32 (in MCQ mode) and sizeof(unsigned int) == 4, 1U <<
task_tag will out of bounds for a u32 mask. Fix this up to prevent
SHIFT_ISSUE (bitwise shifts that are out of bounds for their data type).
[name:debug_monitors&]Unexpected kernel BRK exception at EL1
[name:traps&]Internal error: BRK handler: 00000000f2005514 [#1] PREEMPT SMP
[name:mediatek_cpufreq_hw&]cpufreq stop DVFS log done
[name:mrdump&]Kernel Offset: 0x1ba5800000 from 0xffffffc008000000
[name:mrdump&]PHYS_OFFSET: 0x80000000
[name:mrdump&]pstate: 22400005 (nzCv daif +PAN -UAO)
[name:mrdump&]pc : [0xffffffdbaf52bb2c] ufshcd_clear_cmd+0x280/0x288
[name:mrdump&]lr : [0xffffffdbaf52a774] ufshcd_wait_for_dev_cmd+0x3e4/0x82c
[name:mrdump&]sp : ffffffc0081471b0
<snip>
Workqueue: ufs_eh_wq_0 ufshcd_err_handler
Call trace:
dump_backtrace+0xf8/0x144
show_stack+0x18/0x24
dump_stack_lvl+0x78/0x9c
dump_stack+0x18/0x44
mrdump_common_die+0x254/0x480 [mrdump]
ipanic_die+0x20/0x30 [mrdump]
notify_die+0x15c/0x204
die+0x10c/0x5f8
arm64_notify_die+0x74/0x13c
do_debug_exception+0x164/0x26c
el1_dbg+0x64/0x80
el1h_64_sync_handler+0x3c/0x90
el1h_64_sync+0x68/0x6c
ufshcd_clear_cmd+0x280/0x288
ufshcd_wait_for_dev_cmd+0x3e4/0x82c
ufshcd_exec_dev_cmd+0x5bc/0x9ac
ufshcd_verify_dev_init+0x84/0x1c8
ufshcd_probe_hba+0x724/0x1ce0
ufshcd_host_reset_and_restore+0x260/0x574
ufshcd_reset_and_restore+0x138/0xbd0
ufshcd_err_handler+0x1218/0x2f28
process_one_work+0x5fc/0x1140
worker_thread+0x7d8/0xe20
kthread+0x25c/0x468
ret_from_fork+0x10/0x20
CVE-2023-52642
N/A
17 Apr 2024
In the Linux kernel, the following vulnerability has been resolved:
media: rc: bpf attach/detach requires write permission
Note that bpf attach/detach also requires CAP_NET_ADMIN.
CVE-2024-3832
N/A
17 Apr 2024
Object corruption in V8 in Google Chrome prior to 124.0.6367.60 allowed a remote attacker to potentially exploit object corruption via a crafted HTML page. (Chromium security severity: High)
CVE-2024-30952
N/A
17 Apr 2024
A stored cross-site scripting (XSS) vulnerability in PESCMS-TEAM v2.3.6 allows attackers to execute arbitrary web scripts or HTML via a crafted payload injected into the domain input field under /youdoamin/?g=Team&m=Setting&a=action.
CVE-2024-30981
N/A
17 Apr 2024
SQL Injection vulnerability in /edit-computer-detail.php in phpgurukul Cyber Cafe Management System Using PHP & MySQL v1.0 allows attackers to run arbitrary SQL commands via editid in the application URL.
CVE-2024-30989
N/A
17 Apr 2024
Cross Site Scripting vulnerability in /edit-client-details.php of phpgurukul Client Management System using PHP & MySQL 1.1 allows attackers to execute arbitrary code via the "cname", "comname", "state" and "city" parameter.
CVE-2024-31580
N/A
17 Apr 2024
PyTorch before v2.2.0 was discovered to contain a heap buffer overflow vulnerability in the component /runtime/vararg_functions.cpp. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted input.
CVE-2023-46060
N/A
17 Apr 2024
A Buffer Overflow vulnerability in Tenda AC500 v.2.0.1.9 allows a remote attacker to cause a denial of service via the port parameter at the goform/setVlanInfo component.
CVE-2024-32341
N/A
17 Apr 2024
Multiple cross-site scripting (XSS) vulnerabilities in the Home page of WonderCMS v3.4.3 allows attackers to execute arbitrary web scripts or HTML via a crafted payload injected into any of the parameters.
CVE-2024-21121
N/A
16 Apr 2024
CVE-2024-21116
N/A
16 Apr 2024
CVE-2024-21115
N/A
16 Apr 2024
CVE-2024-21113
N/A
16 Apr 2024
CVE-2024-21112
N/A
16 Apr 2024
CVE-2024-21111
N/A
16 Apr 2024
CVE-2024-21104
N/A
16 Apr 2024
Page 514 of 646
Page 514 of 646